SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lundin Angelica 1971) srt2:(2016)"

Sökning: WFRF:(Lundin Angelica 1971) > (2016)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kuisma, Mikael Juhani, 1984, et al. (författare)
  • Comparative Ab-Initio Study of Substituted Norbornadiene-Quadricyclane Compounds for Solar Thermal Storage
  • 2016
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 120:7, s. 3635-3645
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular photoswitches that are capable of storing solar energy, so-called molecular solar thermal storage systems, are interesting candidates for future renewable energy applications. In this context, substituted norbornadiene-quadricyclane systems have received renewed interest due to recent advances in their synthesis. The optical, thermodynamic, and kinetic properties of these systems can vary dramatically depending on the chosen substituents. The molecular design of optimal compounds therefore requires a detailed understanding of the effect of individual substituents as well as their interplay. Here, we model absorption spectra, potential energy storage, and thermal barriers for back-conversion of several substituted systems using both single-reference (density functional theory using PBE, B3LYP, CAM-B3LYP, M06, M06-2x, and M06-L functionals as well as MP2 calculations) and multireference methods (complete active space techniques). Already the diaryl substituted compound displays a strong red shift compared to the unsubstituted system, which is shown to result from the extension of the conjugated pi-system upon substitution. Using specific donor/acceptor groups gives rise to a further albeit relatively smaller red-shift. The calculated storage energy is found to be rather insensitive to the specific substituents, although solvent effects are likely to be important and require further study. The barrier for thermal back-conversion exhibits strong multireference character and as a result is noticeably correlated with the red-shift. Two possible reaction paths for the thermal back-conversion of diaryl substituted quadricyclane are identified and it is shown that among the compounds considered the path via the acceptor side is systematically favored. Finally, the present study establishes the basis for high-throughput screening of norbornadiene-quadricyclane compounds as it provides guidelines for the level of accuracy that can be expected for key properties from several different techniques.
  •  
2.
  • Kuisma, Mikael Juhani, 1984, et al. (författare)
  • Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles Calculations
  • 2016
  • Ingår i: ChemSusChem. - : Wiley. - 1864-5631 .- 1864-564X. ; 9:14, s. 1786-1794
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular photoswitches capable of storing solar energy are interesting candidates for future renewable energy applications. Here, using quantum mechanical calculations, we carry out a systematic screening of crucial optical (solar spectrum match) and thermal (storage energy density) properties of 64 such compounds based on the norbornadiene-quadricyclane system. Whereas a substantial number of these molecules reach the theoretical maximum solar power conversion efficiency, this requires a strong red-shift of the absorption spectrum, which causes undesirable absorption by the photoisomer as well as reduced thermal stability. These compounds typically also have a large molecular mass, leading to low storage densities. By contrast, single-substituted systems achieve a good compromise between efficiency and storage density, while avoiding competing absorption by the photo-isomer. This establishes guiding principles for the future development of molecular solar thermal storage systems.
  •  
3.
  • Lennartson, Anders, 1980, et al. (författare)
  • Tuning the photochemical properties of the fulvalene-tetracarbonyl-diruthenium system
  • 2016
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry (RSC). - 1477-9226 .- 1477-9234. ; 45:21, s. 8740-8744
  • Tidskriftsartikel (refereegranskat)abstract
    • In a Molecular Solar-Thermal Energy Storage (MOST) system, solar energy is converted to chemical energy using a compound that undergoes reversible endothermic photoisomerization. The high-energy photoisomer can later be converted back to the parent compound and the excess energy is released as heat. One of the most studied MOST systems is based on fulvalene-tetracarbonyl-diruthenium, and this paper demonstrates, for the first time, the possibility to tune the photochemical properties of this system by positive steric hindrance working on the fulvalene unit.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy