SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lutay Nataliya) ;srt2:(2015-2019)"

Sökning: WFRF:(Lutay Nataliya) > (2015-2019)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alaridah, Nader, et al. (författare)
  • Mycobacteria Manipulate G-Protein-Coupled Receptors to Increase Mucosal Rac1 Expression in the Lungs
  • 2017
  • Ingår i: Journal of Innate Immunity. - : S. Karger AG. - 1662-811X .- 1662-8128. ; 9, s. 318-329
  • Tidskriftsartikel (refereegranskat)abstract
    • Mycobacterium bovis bacille Calmette-Guérin (BCG) is currently the only approved vaccine against tuberculosis (TB). BCG mimics M. tuberculosis (Mtb) in its persistence in the body and is used as a benchmark to compare new vaccine candidates. BCG was originally designed for mucosal vaccination, but comprehensive knowledge about its interaction with epithelium is currently lacking. We used primary airway epithelial cells (AECs) and a murine model to investigate the initial events of mucosal BCG interactions. Furthermore, we analysed the impact of the G-protein-coupled receptors (GPCRs), CXCR1 and CXCR2, in this process, as these receptors were previously shown to be important during TB infection. BCG infection of AECs induced GPCR-dependent Rac1 up-regulation, resulting in actin redistribution. The altered distribution of the actin cytoskeleton involved the MAPK signalling pathway. Blocking of the CXCR1 or CXCR2 prior to infection decreased Rac1 expression, and increased epithelial transcriptional activity and epithelial cytokine production. BCG infection did not result in epithelial cell death as measured by p53 phosphorylation and annexin. This study demonstrated that BCG infection of AECs manipulated the GPCRs to suppress epithelial signalling pathways. Future vaccine strategies could thus be improved by targeting GPCRs.
  •  
2.
  • Ambite, Ines, et al. (författare)
  • Bacterial suppression of RNA polymerase II-dependent host gene expression
  • 2016
  • Ingår i: Pathogens. - : MDPI AG. - 2076-0817. ; 5:3
  • Forskningsöversikt (refereegranskat)abstract
    • Asymptomatic bacteriuria (ABU) is a bacterial carrier state in the urinary tract that resembles commensalism at other mucosal sites. ABU strains often lack the virulence factors that characterize uropathogenic Escherichia coli (E. coli) strains and therefore elicit weak innate immune responses in the urinary tract. In addition, ABU strains are active modifiers of the host environment, which they influence by suppressing RNA polymerase II (Pol II)-dependent host gene expression. In patients inoculated with the ABU strain E. coli 83972, gene expression was markedly reduced after 24 h (>60% of all regulated genes). Specific repressors and activators of Pol II-dependent transcription were modified, and Pol II Serine 2 phosphorylation was significantly inhibited, indicating reduced activity of the polymerase. This active inhibition included disease–associated innate immune response pathways, defined by TLR4, IRF-3 and IRF-7, suggesting that ABU strains persist in human hosts by active suppression of the antibacterial defense. In a search for the mechanism of inhibition, we compared the whole genome sequences of E. coli 83972 and the uropathogenic strain E. coli CFT073. In addition to the known loss of virulence genes, we observed that the ABU strain has acquired several phages and identified the lytic Prophage 3 as a candidate Pol II inhibitor. Intact phage particles were released by ABU during in vitro growth in human urine. To address if Prophage 3 affects Pol II activity, we constructed a Prophage 3 negative deletion mutant in E. coli 83972 and compared the effect on Pol II phosphorylation between the mutant and the E. coli 83972 wild type (WT) strains. No difference was detected, suggesting that the Pol II inhibitor is not encoded by the phage. The review summarizes the evidence that the ABU strain E. coli 83972 modifies host gene expression by inhibition of Pol II phosphorylation, and discusses the ability of ABU strains to actively create an environment that enhances their persistence.
  •  
3.
  • Arteaga-Marrero, N, et al. (författare)
  • Multimodal approach to assess tumour vasculature and potential treatment effect with DCE-US and DCE-MRI quantification in CWR22 prostate tumour xenografts.
  • 2015
  • Ingår i: Contrast Media & Molecular Imaging. - : Wiley. - 1555-4317 .- 1555-4309. ; 10:6, s. 428-437
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to compare intratumoural heterogeneity and longitudinal changes assessed by dynamic contrast-enhanced ultrasound (DCE-US) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in prostate tumour xenografts. In vivo DCE-US and DCE-MRI were obtained 24 h pre- (day 0) and post- (day 2) radiation treatment with a single dose of 7.5 Gy. Characterization of the tumour vasculature was determined by Brix pharmacokinetic analysis of the time-intensity curves. Histogram analysis of voxels showed significant changes (p < 0.001) from day 0 to day 2 in both modalities for kep , the exchange rate constant from the extracellular extravascular space to the plasma, and kel , the elimination rate constant of the contrast. In addition, kep and kel values from DCE-US were significantly higher than those derived from DCE-MRI at day 0 (p < 0.0001) for both groups. At day 2, kel followed the same tendency for both groups, whereas kep showed this tendency only for the treated group in intermediate-enhancement regions. Regarding kep median values, longitudinal changes were not found for any modality. However, at day 2, kep linked to DCE-US was correlated to MVD in high-enhancement areas for the treated group (p = 0.05). In contrast, correlation to necrosis was detected for the control group in intermediate-enhancement areas (p < 0.1). Intratumoural heterogeneity and longitudinal changes in tumour vasculature were assessed for both modalities. Microvascular parameters derived from DCE-US seem to provide reliable biomarkers during radiotherapy as validated by histology. Furthermore, DCE-US could be a stand-alone or a complementary technique. Copyright © 2015 John Wiley & Sons, Ltd.
  •  
4.
  • Arteaga-Marrero, Natalia, et al. (författare)
  • Radiation treatment monitoring using multimodal functional imaging: PET/CT ((18)F-Fluoromisonidazole & (18)F-Fluorocholine) and DCE-US.
  • 2015
  • Ingår i: Journal of Translational Medicine. - : Springer Science and Business Media LLC. - 1479-5876. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aims to assess the effect of radiation treatment on the tumour vasculature and its downstream effects on hypoxia and choline metabolism using a multimodal approach in the murine prostate tumour model CWR22. Functional parameters derived from Positron Emission Tomography (PET)/Computer Tomography (CT) with (18)F-Fluoromisonidazole ((18)F-FMISO) and (18)F-Fluorocholine ((18)F-FCH) as well as Dynamic Contrast-Enhanced Ultrasound (DCE-US) were employed to determine the relationship between metabolic parameters and microvascular parameters that reflect the tumour microenvironment. Immunohistochemical analysis was employed for validation.
  •  
5.
  • Arteaga-Marrero, Natalia, et al. (författare)
  • Radiation treatment monitoring with DCE-US in CWR22 prostate tumor xenografts
  • 2019
  • Ingår i: Acta Radiologica. - : Sage Publications. - 0284-1851 .- 1600-0455. ; 60:6, s. 788-797
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Longitudinal monitoring of potential radiotherapy treatment effects can be determined by dynamic contrast-enhanced ultrasound (DCE-US).Purpose: To assess functional parameters by means of DCE-US in a murine subcutaneous model of human prostate cancer, and their relationship to dose deposition and time-frame after treatment. A special focus has been placed to evaluate the vascular heterogeneity of the tumor and on the most suitable data analysis approach that reflects this heterogeneity.Material and Methods: In vivo DCE-US was acquired 24 h and 48 h after radiation treatment with a single dose of 7.5 Gy and 10 Gy, respectively. Tumor vasculature was characterized pixelwise using the Brix pharmacokinetic analysis of the time-intensity curves.Results: Longitudinal changes were detected (P < 0.001) at 24 h and 48 h after treatment. At 48 h, the eliminating rate constant of the contrast agent from the plasma, kel, was correlated (P ≤ 0.05) positively with microvessel density (MVD; rτ = 0.7) and negatively with necrosis (rτ = –0.6) for the treated group. Furthermore, Akep, a parameter related to transcapillary transport properties, was also correlated to MVD (rτ = 0.6, P ≤ 0.05).Conclusion: DCE-US has been shown to detect vascular changes at a very early stage after radiotherapy, which is a great advantage since DCE-US is non-invasive, available at most hospitals, and is low in cost compared to other techniques used in clinical practice.
  •  
6.
  • Hao, Xiuli, et al. (författare)
  • Survival in amoeba-a major selection pressure on the presence of bacterial copper and zinc resistance determinants? Identification of a "copper pathogenicity island"
  • 2015
  • Ingår i: Applied Microbiology and Biotechnology. - : Springer Science and Business Media LLC. - 1432-0614 .- 0175-7598. ; 99:14, s. 5817-5824
  • Forskningsöversikt (refereegranskat)abstract
    • The presence of metal resistance determinants in bacteria usually is attributed to geological or anthropogenic metal contamination in different environments or associated with the use of antimicrobial metals in human healthcare or in agriculture. While this is certainly true, we hypothesize that protozoan predation and macrophage killing are also responsible for selection of copper/zinc resistance genes in bacteria. In this review, we outline evidence supporting this hypothesis, as well as highlight the correlation between metal resistance and pathogenicity in bacteria. In addition, we introduce and characterize the "copper pathogenicity island" identified in Escherichia coli and Salmonella strains isolated from copper- and zinc-fed Danish pigs.
  •  
7.
  • Hurley, Sinead M., et al. (författare)
  • The dynamics of platelet activation during the progression of streptococcal sepsis
  • 2016
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Platelets contribute to inflammation however, the role of platelet activation during the pathophysiological response to invasive bacterial infection and sepsis is not clear. Herein, we have investigated platelet activation in a mouse model of invasive Streptococcus pyogenes infection at 5,12, and 18 hours post infection and correlated this to parameters of infection. The platelet population in ex-vivo blood samples showed no increased integrin activation or surface presentation of CD62P, however platelet-neutrophil complex formation and plasma levels of CD62P were increased during bacterial dissemination and the progression of sepsis, indicating that platelet activation had occurred in vivo. Platelet-neutrophil complex formation was the most discriminatory marker of platelet activation. Platelet-neutrophil complexes were increased above baseline levels during early sepsis but decreased to significantly lower levels than baseline during late sepsis. The removal of these complexes from the circulation coincided with a significant increase in organ damage and the accumulation of platelets in the liver sinusoids, suggesting that platelet activation in the circulation precedes accumulation of platelets in damaged organs. The results demonstrate that monitoring platelet activation using complementary methods may provide prognostic information during the pathogenesis of invasive S. pyogenes infection.
  •  
8.
  • Ley, David, et al. (författare)
  • High presence of extracellular hemoglobin in the periventricular white matter following preterm intraventricular hemorrhage
  • 2016
  • Ingår i: Frontiers in Physiology. - : Frontiers Media SA. - 1664-042X. ; 7:AUG
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe cerebral intraventricular hemorrhage (IVH) in preterm infants continues to be a major clinical problem, occurring in about 15-20% of very preterm infants. In contrast to other brain lesions the incidence of IVH has not been reduced over the last decade, but actually slightly increased. Currently over 50% of surviving infants develop post-hemorrhagic ventricular dilatation and about 35% develop severe neurological impairment, mainly cerebral palsy and intellectual disability. To date there is no therapy available to prevent infants from developing either hydrocephalus or serious neurological disability. It is known that blood rapidly accumulates within the ventricles following IVH and this leads to disruption of normal anatomy and increased local pressure. However, the molecular mechanisms causing brain injury following IVH are incompletely understood. We propose that extracellular hemoglobin is central in the pathophysiology of periventricular white matter damage following IVH. Using a preterm rabbit pup model of IVH the distribution of extracellular hemoglobin was characterized at 72 h following hemorrhage. Evaluation of histology, histochemistry, hemoglobin immunolabeling and scanning electron microscopy revealed presence of extensive amounts of extracellular hemoglobin, i.e., not retained within erythrocytes, in the periventricular white matter, widely distributed throughout the brain. Furthermore, double immunolabeling together with the migration and differentiation markers polysialic acid neural cell adhesion molecule (PSA-NCAM) demonstrates that a significant proportion of the extracellular hemoglobin is distributed in areas of the periventricular white matter with high extracellular plasticity. In conclusion, these findings support that extracellular hemoglobin may contribute to the pathophysiological processes that cause irreversible damage to the immature brain following IVH.
  •  
9.
  • Puthia, Manoj, et al. (författare)
  • IRF7 inhibition prevents destructive innate immunity-A target for nonantibiotic therapy of bacterial infections
  • 2016
  • Ingår i: Science Translational Medicine. - : American Association for the Advancement of Science (AAAS). - 1946-6234 .- 1946-6242. ; 8:336
  • Tidskriftsartikel (refereegranskat)abstract
    • Boosting innate immunity represents an important therapeutic alternative to antibiotics. However, the molecular selectivity of this approach is a major concern because innate immune responses often cause collateral tissue damage. We identify the transcription factor interferon regulatory factor 7 (IRF-7), a heterodimer partner of IRF-3, as a target for non-antibiotics-based therapy of bacterial infections. We found that the efficient and self-limiting innate immune response to bacterial infection relies on a tight balance between IRF-3 and IRF-7. Deletion of Irf3 resulted in overexpression of Irf7 and led to an IRF-7-driven hyperinflammatory phenotype, which was entirely prevented if Irf7 was deleted. We then identified a network of strongly up-regulated, IRF-7-dependent genes in Irf3-/- mice with kidney pathology, which was absent in Irf7-/- mice. IRF-3 and IRF-7 from infected kidney cell nuclear extracts were shown to bind OAS1, CCL5, andIFNB1 promoter oligonucleotides. These data are consistent in children with lowIRF7 expression in the blood: attenuating IRF7 promoter polymorphisms (rs3758650-T and rs10902179-G) negatively associated with recurrent pyelonephritis. Finally, we identified IRF-7 as a target for immunomodulatory therapy. Administering liposomal Irf7 siRNA to Irf3-/- mice suppressed mucosal IRF-7 expression, and the mice were protected against infection and renal tissue damage. These findings offer a response to the classical but unresolved question of "good versus bad inflammation" and identify IRF7 as a therapeutic target for protection against bacterial infection.
  •  
10.
  • Tenland, Erik, et al. (författare)
  • Innate immune responses after airway epithelial stimulation with Mycobacterium bovis Bacille-Calmette Guérin
  • 2016
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Mycobacterium bovis bacilli Calmette-Guerin (BCG) is used as a benchmark to compare the immunogenicity of new vaccines against tuberculosis. This live vaccine is administered intradermal, but several new studies show that changing the route to mucosal immunisation represents an improved strategy. We analysed the immunomodulatory functions of BCG on human neutrophils and primary airway epithelial cells (AECs), as the early events of mucosal immune activation are unclear. Neutrophils and the primary epithelial cells were found to express the IL-17A receptor subunit IL-17RA, while the expression of IL-17RE was only observed on epithelial cells. BCG stimulation specifically reduced neutrophil IL-17RA and epithelial IL-17RE expression. BCG induced neutrophil extracellular traps (NETs), but did not have an effect on apoptosis as measured by transcription factor forkhead box O3 (FOXO3). BCG stimulation of AECs induced CXCL8 secretion and neutrophil endothelial passage towards infected epithelia. Infected epithelial cells and neutrophils were not found to be a source of IL-17 cytokines or the interstitial collagenase MMP-1. However, the addition of IFNγ or IL-17A to BCG stimulated primary epithelial cells increased epithelial IL-6 secretion, while the presence of IFNγ reduced neutrophil recruitment. Using our model of mucosal infection we revealed that BCG induces selective mucosal innate immune responses that could lead to induction of vaccine-mediated protection of the lung.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy