SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lydersen Christian) srt2:(2020-2023)"

Sökning: WFRF:(Lydersen Christian) > (2020-2023)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Peart, Claire R., et al. (författare)
  • Determinants of genetic variation across eco-evolutionary scales in pinnipeds
  • 2020
  • Ingår i: Nature Ecology & Evolution. - : NATURE PUBLISHING GROUP. - 2397-334X. ; 4:8, s. 1095-1104
  • Tidskriftsartikel (refereegranskat)abstract
    • The effective size of a population (N-e), which determines its level of neutral variability, is a key evolutionary parameter. N-e can substantially depart from census sizes of present-day breeding populations (N-C) as a result of past demographic changes, variation in life-history traits and selection at linked sites. Using genome-wide data we estimated the long-term coalescent N-e for 17 pinniped species represented by 36 population samples (total n = 458 individuals). N-e estimates ranged from 8,936 to 91,178, were highly consistent within (sub)species and showed a strong positive correlation with N-C (R-adj(2) = 0.59; P = 0.0002). N-e/N-C ratios were low (mean, 0.31; median, 0.13) and co-varied strongly with demographic history and, to a lesser degree, with species' ecological and life-history variables such as breeding habitat. Residual variation in N-e/N-C, after controlling for past demographic fluctuations, contained information about recent population size changes during the Anthropocene. Specifically, species of conservation concern typically had positive residuals indicative of a smaller contemporary N-C than would be expected from their long-term N-e. This study highlights the value of comparative population genomic analyses for gauging the evolutionary processes governing genetic variation in natural populations, and provides a framework for identifying populations deserving closer conservation attention.
  •  
2.
  • Sromek, Ludmila, et al. (författare)
  • Loss of species and genetic diversity during colonization : Insights from acanthocephalan parasites in northern European seals
  • 2023
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 13:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies on host–parasite systems that have experienced distributional shifts, range fragmentation, and population declines in the past can provide information regarding how parasite community richness and genetic diversity will change as a result of anthropogenic environmental changes in the future. Here, we studied how sequential postglacial colonization, shifts in habitat, and reduced host population sizes have influenced species richness and genetic diversity of Corynosoma (Acanthocephala: Polymorphidae) parasites in northern European marine, brackish, and freshwater seal populations. We collected Corynosoma population samples from Arctic, Baltic, Ladoga, and Saimaa ringed seal subspecies and Baltic gray seals, and then applied COI barcoding and triple-enzyme restriction-site associated DNA (3RAD) sequencing to delimit species, clarify their distributions and community structures, and elucidate patterns of intraspecific gene flow and genetic diversity. Our results showed that Corynosoma species diversity reflected host colonization histories and population sizes, with four species being present in the Arctic, three in the Baltic Sea, two in Lake Ladoga, and only one in Lake Saimaa. We found statistically significant population-genetic differentiation within all three Corynosoma species that occur in more than one seal (sub)species. Genetic diversity tended to be high in Corynosoma populations originating from Arctic ringed seals and low in the landlocked populations. Our results indicate that acanthocephalan communities in landlocked seal populations are impoverished with respect to both species and intraspecific genetic diversity. Interestingly, the loss of genetic diversity within Corynosoma species seems to have been less drastic than in their seal hosts, possibly due to their large local effective population sizes resulting from high infection intensities and effective intra-host population mixing. Our study highlights the utility of genomic methods in investigations of community composition and genetic diversity of understudied parasites.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy