SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mäkelä E.) srt2:(2005-2009)"

Sökning: WFRF:(Mäkelä E.) > (2005-2009)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antonsson, Stefan, et al. (författare)
  • Comparison of the physical properties between hardwood and softwood pulps
  • 2009
  • Ingår i: Nordic Pulp & Paper Research Journal. - 0283-2631 .- 2000-0669. ; 24:4, s. 409-414
  • Tidskriftsartikel (refereegranskat)abstract
    • High mechano-sorptive creep resistance, i.e., good creep resistance in environments with changing relative humidity, is one of the key requirements for linerboards. The aim of this study was to investigate the influence of pulp types and pulp properties on the mechano-sorptive creep of kraftliner. A high-yield softwood, kraftliner pulp, and four different hardwood pulps were investigated. The physical properties of laboratory sheets were evaluated, with emphasis on the mechano-sorptive creep properties.The results showed that the density increase due to increased beating significantly improved the tensile stiffness of all pulps, while its effect on the isocyclic creep stiffness was less pronounced. The hardwood pulps showed higher tensile stiffness, better mechano-sorptive creep properties, and lower hygroexpansion than the softwood pulp at a given density. However, the softwood pulp did exhibit better tensile strength and fracture toughness properties than the hardwood pulps.The results imply that hardwood pulps can be competitive with softwood pulps in kraftliners, provided that their tensile strength and fracture toughness properties can be improved by, for example, chemical means. Furthermore, the isocyclic creep stiffness correlates with the ratio of tensile stiffness to hygroexpansion, indicating that this ratio can be used for engineering estimates of the mechano-sorptive creep performance of paper materials.
  •  
2.
  • Antonsson, S., et al. (författare)
  • Comparison of the physical properties of hardwood and softwood pulps
  • 2009
  • Ingår i: Nordic Pulp & Paper Research Journal. - 0283-2631 .- 2000-0669. ; 24:4, s. 409-414
  • Tidskriftsartikel (refereegranskat)abstract
    • High mechano-sorptive creep resistance, i.e., good creep resistance in environments with changing relative humidity, is one of the key requirements for linerboards. The aim of this study was to investigate the influence of pulp types and pulp properties on the mechano-sorptive creep of kraftliner. A high-yield softwood, kraftliner pulp, and four different hardwood pulps were investigated. The physical properties of laboratory sheets were evaluated, with emphasis on the mechanosorptive creep properties. The results showed that the density increase due to increased beating significantly improved the tensile stiffness of all pulps, while its effect on the isocyclic creep stiffness was less pronounced. The hardwood pulps showed higher tensile stiffness, better mechano-sorptive creep properties, and lower hygroexpansion than the softwood pulp at a given density. However, the softwood pulp did exhibit better tensile strength and fracture toughness properties than the hardwood pulps. The results imply that hardwood pulps can be competitive with softwood pulps in kraftliners, provided that their tensile strength and fracture toughness properties can be improved by, for example, chemical means. Furthermore, the isocyclic creep stiffness correlates with the ratio of tensile stiffness to hygroexpansion, indicating that this ratio can be used for engineering estimates of the mechano-sorptive creep performance of paper materials.
  •  
3.
  • Bengtsson, Magnus W., et al. (författare)
  • Food-induced expression of orexin receptors in rat duodenal mucosa regulates the bicarbonate secretory response to orexin-A
  • 2007
  • Ingår i: American Journal of Physiology - Gastrointestinal and Liver Physiology. - : American Physiological Society. - 0193-1857 .- 1522-1547. ; 293:2, s. G501-G509
  • Tidskriftsartikel (refereegranskat)abstract
    • Presence of appetite-regulating peptides orexin-A and orexin-B in mucosal endocrine cells suggests a role in physiological control of the intestine. Our aim was to characterize orexin-induced stimulation of duodenal bicarbonate secretion and modulation of secretory responses and mucosal orexin receptors by overnight food deprivation. Lewis x Dark Agouti rats were anesthetized and proximal duodenum cannulated in situ. Mucosal bicarbonate secretion (pH stat) and mean arterial blood pressure were continuously recorded. Orexin-A was administered intra-arterially close to the duodenum, intraluminally, or into the brain ventricles. Total RNA was extracted from mucosal specimens, reverse transcribed to cDNA and expression of orexin receptors 1 and 2 (OX1 and OX2) measured by quantitative real-time PCR. OX1 protein was measured by Western blot. Intra-arterial orexin-A (60–600 nmol·h–1·kg–1) increased (P < 0.01) the duodenal secretion in fed but not in fasted animals. The OX1 receptor antagonist SB-334867, which was also found to have a partial agonist action, abolished the orexin-induced secretory response but did not affect secretion induced by the muscarinic agonist bethanechol. Atropine, in contrast, inhibited bethanechol but not orexin-induced secretion. Orexin-A infused into the brain ventricles (2–20 nmol·kg–1·h–1) or added to luminal perfusate (1.0–100 nM) did not affect secretion, indicating that orexin-A acts peripherally and at basolateral receptors. Overnight fasting decreased mucosal OX1 and OX2 mRNA expression (P < 0.01) as well as OX1 protein expression (P < 0.05). We conclude that stimulation of secretion by orexin-A may involve both receptor types and is independent of cholinergic pathways. Intestinal OX receptors and secretory responses are markedly related to food intake.
  •  
4.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy