SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(M Ridker Paul) srt2:(2020-2023)"

Search: WFRF:(M Ridker Paul) > (2020-2023)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Kanoni, Stavroula, et al. (author)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • In: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Journal article (peer-reviewed)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N=1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
4.
  •  
5.
  • de las Fuentes, Lisa, et al. (author)
  • Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci
  • 2021
  • In: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 26:6, s. 2111-2125
  • Journal article (peer-reviewed)abstract
    • Educational attainment is widely used as a surrogate for socioeconomic status (SES). Low SES is a risk factor for hypertension and high blood pressure (BP). To identify novel BP loci, we performed multi-ancestry meta-analyses accounting for gene-educational attainment interactions using two variables, “Some College” (yes/no) and “Graduated College” (yes/no). Interactions were evaluated using both a 1 degree of freedom (DF) interaction term and a 2DF joint test of genetic and interaction effects. Analyses were performed for systolic BP, diastolic BP, mean arterial pressure, and pulse pressure. We pursued genome-wide interrogation in Stage 1 studies (N = 117 438) and follow-up on promising variants in Stage 2 studies (N = 293 787) in five ancestry groups. Through combined meta-analyses of Stages 1 and 2, we identified 84 known and 18 novel BP loci at genome-wide significance level (P < 5 × 10-8). Two novel loci were identified based on the 1DF test of interaction with educational attainment, while the remaining 16 loci were identified through the 2DF joint test of genetic and interaction effects. Ten novel loci were identified in individuals of African ancestry. Several novel loci show strong biological plausibility since they involve physiologic systems implicated in BP regulation. They include genes involved in the central nervous system-adrenal signaling axis (ZDHHC17, CADPS, PIK3C2G), vascular structure and function (GNB3, CDON), and renal function (HAS2 and HAS2-AS1, SLIT3). Collectively, these findings suggest a role of educational attainment or SES in further dissection of the genetic architecture of BP.
  •  
6.
  • Surendran, Praveen, et al. (author)
  • Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals
  • 2020
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 52:12, s. 1314-1332
  • Journal article (peer-reviewed)abstract
    • Genetic studies of blood pressure (BP) to date have mainly analyzed common variants (minor allele frequency > 0.05). In a meta-analysis of up to similar to 1.3 million participants, we discovered 106 new BP-associated genomic regions and 87 rare (minor allele frequency <= 0.01) variant BP associations (P < 5 x 10(-8)), of which 32 were in new BP-associated loci and 55 were independent BP-associated single-nucleotide variants within known BP-associated regions. Average effects of rare variants (44% coding) were similar to 8 times larger than common variant effects and indicate potential candidate causal genes at new and known loci (for example, GATA5 and PLCB3). BP-associated variants (including rare and common) were enriched in regions of active chromatin in fetal tissues, potentially linking fetal development with BP regulation in later life. Multivariable Mendelian randomization suggested possible inverse effects of elevated systolic and diastolic BP on large artery stroke. Our study demonstrates the utility of rare-variant analyses for identifying candidate genes and the results highlight potential therapeutic targets.
  •  
7.
  •  
8.
  •  
9.
  • Yaghootkar, Hanieh, et al. (author)
  • Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity
  • 2020
  • In: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 69:12, s. 2806-2818
  • Journal article (peer-reviewed)abstract
    • Leptin influences food intake by informing the brain about the status of body fat stores. Rare LEP mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry (P = 2 × 10-16, n = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.
  •  
10.
  • Ding, Ming, et al. (author)
  • Additive and Multiplicative Interactions Between Genetic Risk Score and Family History and Lifestyle in Relation to Risk of Type 2 Diabetes
  • 2020
  • In: American Journal of Epidemiology. - : Oxford University Press. - 0002-9262 .- 1476-6256. ; 189:5, s. 445-460
  • Journal article (peer-reviewed)abstract
    • We examined interactions between lifestyle factors and genetic risk of type 2 diabetes (T2D-GR), captured by genetic risk score (GRS) and family history (FH). Our initial study cohort included 20,524 European-ancestry participants, of whom 1,897 developed incident T2D, in the Nurses' Health Study (1984-2016), Nurses' Health Study II (1989-2016), and Health Professionals Follow-up Study (1986-2016). The analyses were replicated in 19,183 European-ancestry controls and 2,850 incident T2D cases in the Women's Genome Health Study (1992-2016). We defined 2 categories of T2D-GR: high GRS (upper one-third) with FH and low GRS or without FH. Compared with participants with the healthiest lifestyle and low T2D-GR, the relative risk of T2D for participants with the healthiest lifestyle and high T2D-GR was 2.24 (95% confidence interval (CI): 1.76, 2.86); for participants with the least healthy lifestyle and low T2D-GR, it was 4.05 (95% CI: 3.56, 4.62); and for participants with the least healthy lifestyle and high T2D-GR, it was 8.72 (95% CI: 7.46, 10.19). We found a significant departure from an additive risk difference model in both the initial and replication cohorts, suggesting that adherence to a healthy lifestyle could lead to greater absolute risk reduction among those with high T2D-GR. The public health implication is that a healthy lifestyle is important for diabetes prevention, especially for individuals with high GRS and FH of T2D.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view