SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mackie Claire) srt2:(2011-2014)"

Sökning: WFRF:(Mackie Claire) > (2011-2014)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Loryan, Irena, 1977-, et al. (författare)
  • Mechanistic Understanding of Brain Drug Disposition to Optimize the Selection of Potential Neurotherapeutics in Drug Discovery
  • 2014
  • Ingår i: Pharmaceutical research. - : Springer Science and Business Media LLC. - 0724-8741 .- 1573-904X. ; 31:8, s. 2203-2219
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeThe current project was undertaken with the aim to propose and test an in-depth integrative analysis of neuropharmacokinetic (neuroPK) properties of new chemical entities (NCEs), thereby optimizing the routine of evaluation and selection of novel neurotherapeutics.MethodsForty compounds covering a wide range of physicochemical properties and various CNS targets were investigated. The combinatory mapping approach was used for the assessment of the extent of blood-brain and cellular barriers transport via estimation of unbound-compound brain (Kp,uu,brain) and cell (Kp,uu,cell) partitioning coefficients. Intra-brain distribution was evaluated using the brain slice method. Intra- and sub-cellular distribution was estimated via calculation of unbound-drug cytosolic and lysosomal partitioning coefficients.ResultsAssessment of Kp,uu,brain revealed extensive variability in the brain penetration properties across compounds, with a prevalence of compounds actively effluxed at the blood-brain barrier. Kp,uu,cell was valuable for identification of compounds with a tendency to accumulate intracellularly. Prediction of cytosolic and lysosomal partitioning provided insight into the subcellular accumulation. Integration of the neuroPK parameters with pharmacodynamic readouts demonstrated the value of the proposed approach in the evaluation of target engagement and NCE selection.ConclusionsWith the rather easily-performed combinatory mapping approach, it was possible to provide quantitative information supporting the decision making in the drug discovery setting.
  •  
2.
  • Sinha, Vikash K., et al. (författare)
  • Towards a Better Prediction of Peak Concentration, Volume of Distribution and Half-Life after Oral Drug Administration in Man, Using Allometry
  • 2011
  • Ingår i: Clinical Pharmacokinetics. - : Springer Science and Business Media LLC. - 0312-5963 .- 1179-1926. ; 50:5, s. 307-318
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: it is imperative that new drugs demonstrate adequate pharmacokinetic properties, allowing an optimal safety margin and convenient dosing regimens in clinical practice, which then lead to better patient compliance. Such pharmacokinetic properties include suitable peak (maximum) plasma drug concentration (C-max), area under the plasma concentration-time curve (AUC) and a suitable half-life (t(1/4)). The C-max and t(1/2) following oral drug administration are functions of the oral clearance (CL/F) and apparent volume of distribution during the terminal phase by the oral route (V-z/F), each of which may be predicted and combined to estimate C-max and t(1/4). Allometric scaling is a widely used methodology in the pharmaceutical industry to predict human pharmacokinetic parameters such as clearance and volume of distribution. In our previous published work, we have evaluated the use of allometry for prediction of CL/F and AUC. In this paper we describe the evaluation of different allometric scaling approaches for the prediction of C-max, V-z/F and t(1/2) after oral drug administration in man. Methods: Twenty-nine compounds developed at Janssen Research and Development (a division of Janssen Pharmaceutica NV), covering a wide range of physicochemical and pharmacokinetic properties, were selected. The C,, following oral dosing of a compound was predicted using (i) simple allometry alone; (ii) simple allometry along with correction factors such as plasma protein binding (PPB), maximum life-span potential or brain weight (reverse rule of exponents, unbound C-max approach); and (iii) an indirect approach using allometrically predicted CL/F and V-z/F and absorption rate constant (k(a)). The k(a) was estimated from (i) in vivo pharmacokinetic experiments in preclinical species; and (ii) predicted effective permeability in man Weir), using a Caco-2 permeability assay. The V-z/F was predicted using allometric scaling with or without PPB correction. The t(1/2) was estimated from the allometrically predicted parameters CL/F and V-z/F. Predictions were deemed adequate when errors were within a 2-fold range. Results: C-max and t(1/2), could be predicted within a 2-fold error range for 59% and 66% of the tested compounds, respectively, using allometrically predicted CL/F and V-z/F. The best predictions for Cif, were obtained when K-a values were calculated from the Caco-2 permeability assay. The V-z/F was predicted within a 2-fold error range for 72% of compounds when PPB correction was applied as the correction factor for scaling. Conclusions: We conclude that (i) C-max and t(1/2), are best predicted by indirect scaling approaches (using allometrically predicted CL/F and V-z/F and accounting for ka derived from permeability assay); and (ii) the PPB is an important correction factor for the prediction of V-z/F by using allometric scaling. Furthermore, additional work is warranted to understand the mechanisms governing the processes underlying determination of C-max so that the empirical approaches can be fine-tuned further.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy