SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Madsen Rasmus) srt2:(2010-2014)"

Sökning: WFRF:(Madsen Rasmus) > (2010-2014)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Banasik, Karina, et al. (författare)
  • The FOXO3A rs2802292 G-Allele Associates with Improved Peripheral and Hepatic Insulin Sensitivity and Increased Skeletal Muscle-FOXO3A mRNA Expression in Twins.
  • 2011
  • Ingår i: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 96, s. 119-124
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective: The minor G allele of FOXO3A rs2802292 has been associated with longevity. We aimed to investigate whether a phenotype related to healthy metabolic aging could be identified in individuals carrying the longevity-associated FOXO3A rs2802292 G allele. Research Design and Methods: rs2802292 was genotyped in a phenotypically well-characterized population of young and elderly twins (n = 190) and in the population-based Inter99 cohort (n = 5768). All participants underwent oral glucose tolerance tests, and the twin population was additionally examined with an iv glucose tolerance test and a hyperinsulinemic, euglycemic clamp. Basal and insulin-stimulated FOXO3A mRNA expression was assessed in skeletal muscle biopsies from the twin population. Results: In the twin sample, carriers of the minor G allele of rs2802292 showed reduced fasting plasma insulin [per allele effect (β) = -13% (-24; -1) (95% confidence interval), P = 0.03] and lower incremental area under the curve 0-120 min for insulin after an oral glucose load [β = -14% (-23; -), P = 0.005]. The G allele was associated with increased peripheral insulin action [glucose disposal rate clamp, β = 0.85 mg·kgfat-free mass(-1) · min(-1) (0.049; 1.64), P = 0.04] and lower hepatic insulin resistance index [β = -13% (-25; -1), P = 0.03]. Furthermore, carriers of the G allele had increased basal FOXO3A mRNA expression in skeletal muscle compared with T-allele carriers [β = 16% (0; 33), P = 0.047]. In the Inter99 sample, we found an association with reduced incremental area under the curve 0-120 min for insulin after an oral glucose load [β = -3% (-5; -0.07), P = 0.04], but this association was not significant after adjustment for body mass index. Conclusion: Our data indicate that the minor G allele of FOXO3A rs2802292 is associated with enhanced peripheral and hepatic insulin sensitivity in our small twin cohort, which may be mediated through increased FOXO3A mRNA expression, although no major metabolic impact of rs2802292 was found in the large Inter99 cohort.
  •  
2.
  • Eliasson, Mattias, et al. (författare)
  • Strategy for optimizing LC-MS data processing in Metabolomics : A design of experiments approach
  • 2012
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 84:15, s. 6869-6876
  • Tidskriftsartikel (refereegranskat)abstract
    • A strategy for optimizing LC-MS metabolomics data processing is proposed. We applied this strategy on the XCMS open source package written in R on both human and plant biology data. The strategy is a sequential design of experiments (DoE) based on a dilution series from a pooled sample and a measure of correlation between diluted concentrations and integrated peak areas. The reliability index metric, used to define peak quality, simultaneously favors reliable peaks and disfavors unreliable peaks using a weighted ratio between peaks with high and low response linearity. DoE optimization resulted in the case studies in more than 57% improvement in the reliability index compared to the use of the default settings. The proposed strategy can be applied to any other data processing software involving parameters to be tuned, e.g., MZmine 2. It can also be fully automated and used as a module in a complete metabolomics data processing pipeline.
  •  
3.
  • Flannick, Jason, et al. (författare)
  • Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 46:4, s. 357-357
  • Tidskriftsartikel (refereegranskat)abstract
    • Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ∼150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.
  •  
4.
  • Friedrichsen, Martin, et al. (författare)
  • Dissociation between Skeletal Muscle Inhibitor-{kappa}B Kinase/Nuclear Factor-{kappa}B Pathway Activity and Insulin Sensitivity in Nondiabetic Twins.
  • 2010
  • Ingår i: Journal of Clinical Endocrinology and Metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 95:1, s. 414-421
  • Tidskriftsartikel (refereegranskat)abstract
    • Context: Several studies suggest a link between increased activity of the inflammatory inhibitor-kappaB kinase/nuclear factor-kappaB (IKK/NF-kappaB) pathway in skeletal muscle and insulin resistance. Objective: We aimed to study the regulation of skeletal muscle IKK/NF-kappaB pathway activity as well as the association with glucose metabolism and skeletal muscle insulin signaling. Methods: The study population included a metabolically well-characterized cohort of young and elderly predominantly nondiabetic twins (n = 181). Inhibitor-kappaBbeta (IkappaBbeta) protein levels are negatively associated with IKK/NF-kappaB pathway activity and were used to evaluate pathway activity with p65 levels included as loading control. This indirect measure for IKK/NF-kappaB pathway activity was validated by a p65 binding assay. Results: Evaluating the effects of heritability, age, sex, obesity, aerobic capacity, and several hormonal factors (eg insulin and TNF-alpha), only sex and age were significant predictors of IkappaBbeta to p65 ratio (28% decreased ratio in the elderly, P < 0.01, and 49% increased in males P < 0.01). IkappaBbeta to p65 ratio was unrelated to peripheral insulin sensitivity (P = 0.51) and in accordance with this also unrelated to proximal insulin signaling (P = 0.81). Although no association was seen with plasma glucose after oral glucose challenge, there was a tendency for lower IkappaBbeta to p65 ratio (adjusted for age and sex) in subjects with impaired as opposed to normal glucose tolerance (P = 0.055). Conclusions: Altogether the subtle elevated IKK/NF-kappaB pathway activity seen in glucose-intolerant subjects suggests that IKK/NF-kappaB pathway activation may be secondary to impaired glucose tolerance and that skeletal muscle IKK/NF-kappaB pathway activity is unlikely to play any major role in the control of skeletal muscle insulin action in nondiabetic subjects.
  •  
5.
  • Gillberg, Linn, et al. (författare)
  • Does DNA Methylation of PPARGC1A Influence Insulin Action in First Degree Relatives of Patients with Type 2 Diabetes?
  • 2013
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Epigenetics may play a role in the pathophysiology of type 2 diabetes (T2D), and increased DNA methylation of the metabolic master regulator peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) has been reported in muscle and pancreatic islets from T2D patients and in muscle from individuals at risk of T2D. This study aimed to investigate DNA promoter methylation and gene expression of PPARGC1A in skeletal muscle from first degree relatives (FDR) of T2D patients, and to determine the association with insulin action as well as the influence of family relation. We included 124 Danish FDR of T2D patients from 46 different families. Skeletal muscle biopsies were excised from vastus lateralis and insulin action was assessed by oral glucose tolerance tests. DNA methylation and mRNA expression levels were measured using bisulfite sequencing and quantitative real-time PCR, respectively. The average PPARGC1A methylation at four CpG sites situated 867-624 bp from the transcription start was associated with whole-body insulin sensitivity in a paradoxical positive manner (beta = 0.12, P = 0.03), supported by a borderline significant inverse correlation with fasting insulin levels (beta = -0.88, P = 0.06). Excluding individuals with prediabetes and overt diabetes did not affect the overall result. DNA promoter methylation was not associated with PPARGC1A gene expression. The familiality estimate of PPARGC1A gene expression was high (h(2) = 79 +/- 27% (h(2) +/- SE), P = 0.002), suggesting genetic regulation to play a role. No significant effect of familiality on DNA methylation was found. Taken together, increased DNA methylation of the PPARGC1A promoter is unlikely to play a major causal role for the development of insulin resistance in FDR of patients with T2D.
  •  
6.
  • Jacobsen, Stine C., et al. (författare)
  • Young men with low birthweight exhibit decreased plasticity of genome-wide muscle DNA methylation by high-fat overfeeding
  • 2014
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 1432-0428 .- 0012-186X. ; 57:6, s. 1154-1158
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis The association between low birthweight (LBW) and risk of developing type 2 diabetes may involve epigenetic mechanisms, with skeletal muscle being a prime target tissue. Differential DNA methylation patterns have been observed in single genes in muscle tissue from type 2 diabetic and LBW individuals, and we recently showed multiple DNA methylation changes during short-term high-fat overfeeding in muscle of healthy people. In a randomised crossover study, we analysed genome-wide DNA promoter methylation in skeletal muscle of 17 young LBW men and 23 matched normal birthweight (NBW) men after a control and a 5 day high-fat overfeeding diet. Methods DNA methylation was measured using Illumina's Infinium BeadArray covering 27,578 CpG sites representing 14,475 different genes. Results After correction for multiple comparisons, DNA methylation levels were found to be similar in the LBW and NBW groups during the control diet. Whereas widespread DNA methylation changes were observed in the NBW group in response to high-fat overfeeding, only a few methylation changes were seen in the LBW group (chi(2), p < 0.001). Conclusions/interpretation Our results indicate lower DNA methylation plasticity in skeletal muscle from LBW vs NBW men, potentially contributing to understanding the link between LBW and increased risk of type 2 diabetes.
  •  
7.
  • Lundstedt, Torbjörn, et al. (författare)
  • Endogenous metabolic profiling as a tool in drug discovery
  • 2010
  • Ingår i: 7th Annual Global Conference on Neuroprotection and Neuroregeneration. - : Ingenta Connect. - 9789163364495 ; , s. 25-
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)
  •  
8.
  • Madsen, Lise, et al. (författare)
  • UCP1 induction during recruitment of brown adipocytes in white adipose tissue is dependent on cyclooxygenase activity.
  • 2010
  • Ingår i: PloS one. - : Public Library of Science (PLoS). - 1932-6203. ; 5:6, s. e11391-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The uncoupling protein 1 (UCP1) is a hallmark of brown adipocytes and pivotal for cold- and diet-induced thermogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that cyclooxygenase (COX) activity and prostaglandin E(2) (PGE(2)) are crucially involved in induction of UCP1 expression in inguinal white adipocytes, but not in classic interscapular brown adipocytes. Cold-induced expression of UCP1 in inguinal white adipocytes was repressed in COX2 knockout (KO) mice and by administration of the COX inhibitor indomethacin in wild-type mice. Indomethacin repressed beta-adrenergic induction of UCP1 expression in primary inguinal adipocytes. The use of PGE(2) receptor antagonists implicated EP(4) as a main PGE(2) receptor, and injection of the stable PGE(2) analog (EP(3/4) agonist) 16,16 dm PGE(2) induced UCP1 expression in inguinal white adipose tissue. Inhibition of COX activity attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality. CONCLUSIONS/SIGNIFICANCE: Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity development.
  •  
9.
  • Madsen, Rasmus, 1979-, et al. (författare)
  • Altered metabolic signature in Pre-Diabetic NOD Mice
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 7:4, s. e35445-
  • Tidskriftsartikel (refereegranskat)abstract
    • Altered metabolism proceeding seroconversion in children progressing to Type 1 diabetes has previously been demonstrated. We tested the hypothesis that non-obese diabetic (NOD) mice show a similarly altered metabolic profile compared to C57BL/6 mice. Blood samples from NOD and C57BL/6 female mice was collected at 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13 and 15 weeks and the metabolite content was analyzed using GC-MS. Based on the data of 89 identified metabolites OPLS-DA analysis was employed to determine the most discriminative metabolites. In silico analysis of potential involved metabolic enzymes was performed using the dbSNP data base. Already at 0 weeks NOD mice displayed a unique metabolic signature compared to C57BL/6. A shift in the metabolism was observed for both strains the first weeks of life, a pattern that stabilized after 5 weeks of age. Multivariate analysis revealed the most discriminative metabolites, which included inosine and glutamic acid. In silico analysis of the genes in the involved metabolic pathways revealed several SNPs in either regulatory or coding regions, some in previously defined insulin dependent diabetes (Idd) regions. Our result shows that NOD mice display an altered metabolic profile that is partly resembling the previously observation made in children progressing to Type 1 diabetes. The level of glutamic acid was one of the most discriminative metabolites in addition to several metabolites in the TCA cycle and nucleic acid components. The in silico analysis indicated that the genes responsible for this reside within previously defined Idd regions.
  •  
10.
  • Madsen, Rasmus, et al. (författare)
  • Chemometrics in metabolomics - a review in human disease diagnosis
  • 2010
  • Ingår i: Analytica Chimica Acta. - : Elsevier BV. - 0003-2670 .- 1873-4324. ; 659:1-2, s. 23-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolomics is a post genomic research field concerned with developing methods for analysis of low molecular weight compounds in biological systems, such as cells, organs or organisms. Analyzing metabolic differences between unperturbed and perturbed systems, such as healthy volunteers and patients with a disease, can lead to insights into the underlying pathology. In metabolomics analysis, large amounts of data are routinely produced in order to characterize samples. The use of multivariate data analysis techniques and chemometrics is a commonly used strategy for obtaining reliable results. Metabolomics have been applied in different fields such as disease diagnosis, toxicology, plant science and pharmaceutical and environmental research. In this review we take a closer look at the chemometric methods used and the available results within the field of disease diagnosis. We will first present some current strategies for performing metabolomics studies, especially regarding disease diagnosis. The main focus will be on data analysis strategies and validation of multivariate models, since there are many pitfalls in this regard. Further, we highlight the most interesting metabolomics publications and discuss these in detail; additional studies are mentioned as a reference for the interested reader. A general trend is an increased focus on biological interpretation rather than merely the ability to classify samples. In the conclusions, the general trends and some recommendations for improving metabolomics data analysis are provided.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
Typ av publikation
tidskriftsartikel (14)
konferensbidrag (1)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Trygg, Johan (7)
Vaag, Allan (7)
Moritz, Thomas (5)
Poulsen, Pernille (5)
Lundstedt, Torbjörn (5)
Pedersen, Oluf (4)
visa fler...
Hansen, Torben (4)
Ling, Charlotte (2)
Grarup, Niels (2)
Rantapää-Dahlqvist, ... (2)
Johansson, Erik (1)
Stenlund, Hans (1)
Tuomi, Tiinamaija (1)
Groop, Leif (1)
Salomaa, Veikko (1)
Lind, Lars (1)
Cannon, Barbara (1)
Nedergaard, Jan (1)
Lernmark, Åke (1)
Wang, Jun (1)
Brøns, Charlotte (1)
Isomaa, Bo (1)
Laakso, Markku (1)
Forsén, Tom (1)
McCarthy, Mark I (1)
Kravic, Jasmina (1)
Bork-Jensen, Jette (1)
Brandslund, Ivan (1)
Linneberg, Allan (1)
Jørgensen, Torben (1)
Boehnke, Michael (1)
Mohlke, Karen L (1)
Ingelsson, Erik (1)
Jorgensen, Torben (1)
Tuomilehto, Jaakko (1)
Thorleifsson, Gudmar (1)
Thorsteinsdottir, Un ... (1)
Stefansson, Kari (1)
Ma, Tao (1)
Johansson, Stefan (1)
Lundstedt-Enkel, Kat ... (1)
Alenius, Gerd-Marie (1)
Mahajan, Anubha (1)
Banasik, Karina (1)
Ploug, Thorkil (1)
Meitinger, Thomas (1)
Sulem, Patrick (1)
Kong, Augustine (1)
Vaziri Sani, Fariba (1)
Andersson, Åsa (1)
visa färre...
Lärosäte
Lunds universitet (10)
Umeå universitet (8)
Sveriges Lantbruksuniversitet (5)
Uppsala universitet (4)
Stockholms universitet (1)
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (14)
Naturvetenskap (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy