SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mahdavi Mohammad) srt2:(2022)"

Sökning: WFRF:(Mahdavi Mohammad) > (2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Amani, Meisam, et al. (författare)
  • Forty Years of Wetland Status and Trends Analyses in the Great Lakes Using Landsat Archive Imagery and Google Earth Engine
  • 2022
  • Ingår i: Remote Sensing. - : MDPI AG. - 2072-4292. ; 14:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Wetlands provide many benefits, such as water storage, flood control, transformation and retention of chemicals, and habitat for many species of plants and animals. The ongoing degradation of wetlands in the Great Lakes basin has been caused by a number of factors, including climate change, urbanization, and agriculture. Mapping and monitoring wetlands across such large spatial and temporal scales have proved challenging; however, recent advancements in the accessibility and processing efficiency of remotely sensed imagery have facilitated these applications. In this study, the historical Landsat archive was first employed in Google Earth Engine (GEE) to classify wetlands (i.e., Bog, Fen, Swamp, Marsh) and non-wetlands (i.e., Open Water, Barren, Forest, Grassland/Shrubland, Cropland) throughout the entire Great Lakes basin over the past four decades. To this end, an object-based supervised Random Forest (RF) model was developed. All of the produced wetland maps had overall accuracies exceeding 84%, indicating the high capability of the developed classification model for wetland mapping. Changes in wetlands were subsequently assessed for 17 time intervals. It was observed that approximately 16% of the study area has changed since 1984, with the highest increase occurring in the Cropland class and the highest decrease occurring in the Forest and Marsh classes. Forest mostly transitioned to Fen, but was also observed to transition to Cropland, Marsh, and Swamp. A considerable amount of the Marsh class was also converted into Cropland.
  •  
2.
  • Mahdavi, Meisam, et al. (författare)
  • An Efficient Stochastic Reconfiguration Model for Distribution Systems With Uncertain Loads
  • 2022
  • Ingår i: IEEE Access. - : Institute of Electrical and Electronics Engineers (IEEE). - 2169-3536. ; 10, s. 10640-10652
  • Tidskriftsartikel (refereegranskat)abstract
    • Active power losses of distribution systems are higher than transmission ones, in which these losses affect the distribution operational costs directly. One of the efficient and effective methods for power losses reduction is distribution system reconfiguration (DSR). In this way, the network configuration is changed based on a specific power demand that has been already predicted by load forecasting techniques. The ohmic loss level in distribution system is affected by energy demand level, this is while an error in load forecasting can influence losses. Accordingly, including load uncertainty in DSR formulation is essential but this issue should not lead to change of the reconfiguration results significantly (i.e. the model should be robust). This paper presents a robust and efficient model for considering load uncertainty in network reconfiguration that is simple enough to implement in available commercial software packages and it is precise enough to find accurate solutions with low computational time. The analysis of results shows high efficiency and robustness of the proposed model for reconfiguration of distribution systems under demand uncertainty.
  •  
3.
  • Mohseni, Farzane, et al. (författare)
  • Ocean water quality monitoring using remote sensing techniques: A review
  • 2022
  • Ingår i: Marine Environmental Research. - : Elsevier BV. - 0141-1136. ; 180
  • Tidskriftsartikel (refereegranskat)abstract
    • Ocean Water Quality (OWQ) monitoring provides insights into the quality of water in marine and near-shore environments. OWQ measurements can contain the physical, chemical, and biological characteristics of oceanic waters, where low OWQ values indicate an unhealthy ecosystem. Many parameters of water can be estimated from Remote Sensing (RS) data. Thus, RS offers significant opportunities for monitoring water quality in estuaries, coastal waterways, and the ocean. This paper reviews various RS systems and techniques for OWQ monitoring. It first introduces the common OWQ parameters, followed by the definition of the parameters and techniques of OWQ monitoring with RS techniques. In this study, the following OWQ parameters were reviewed: chlorophyll-a, colored dissolved organic matter, turbidity or total suspended matter/solid, dissolved organic carbon, Secchi disk depth, suspended sediment concentration, and sea surface temperature. This study presents a systematic analysis of the capabilities and types of spaceborne systems (e.g., optical and thermal sensors, passive microwave radiometers, active microwave scatterometers, and altimeters) which are commonly applied to OWQ assessment. The paper also provides a summary of the opportunities and limitations of RS data for spatial and temporal estimation of OWQ. Overall, it was observed that chlorophyll-a and colored dissolved organic matter are the dominant parameters applied to OWQ monitoring. It was also concluded that the data from optical and passive microwave sensors could effectively be applied to estimate OWQ parameters. From a methodological perspective, semi-empirical algorithms generally outperform the other empirical, analytical, and semi-analytical methods for OWQ monitoring.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy