SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Maiti S) srt2:(2020-2022)"

Sökning: WFRF:(Maiti S) > (2020-2022)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Khuyagbaatar, J., et al. (författare)
  • Search for elements 119 and 120
  • 2020
  • Ingår i: Physical Review C. - 2469-9985. ; 102:6
  • Tidskriftsartikel (refereegranskat)abstract
    • A search for production of the superheavy elements with atomic numbers 119 and 120 was performed in the 50Ti+249Bk and 50Ti+249Cf fusion-evaporation reactions, respectively, at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. Over four months of irradiation, the 249Bk target partially decayed into 249Cf, which allowed for a simultaneous search for both elements. Neither was detected at cross-section sensitivity levels of 65 and 200 fb for the 50Ti+249Bk and 50Ti+249Cf reactions, respectively, at a midtarget beam energy of Elab = 281.5 MeV. The nonobservation of elements 119 and 120 is discussed within the concept of fusion-evaporation reactions including various theoretical predictions on the fission-barrier heights of superheavy nuclei in the region of the island of stability.
  •  
3.
  • Yakushev, A., et al. (författare)
  • On the adsorption and reactivity of element 114, flerovium
  • 2022
  • Ingår i: Frontiers in Chemistry. - : Frontiers Media SA. - 2296-2646. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Flerovium (Fl, element 114) is the heaviest element chemically studied so far. To date, its interaction with gold was investigated in two gas-solid chromatography experiments, which reported two different types of interaction, however, each based on the level of a few registered atoms only. Whereas noble-gas-like properties were suggested from the first experiment, the second one pointed at a volatile-metal-like character. Here, we present further experimental data on adsorption studies of Fl on silicon oxide and gold surfaces, accounting for the inhomogeneous nature of the surface, as it was used in the experiment and analyzed as part of the reported studies. We confirm that Fl is highly volatile and the least reactive member of group 14. Our experimental observations suggest that Fl exhibits lower reactivity towards Au than the volatile metal Hg, but higher reactivity than the noble gas Rn.
  •  
4.
  • Pramanik, Arindam, et al. (författare)
  • Dirac states in the noncentrosymmetric superconductor BiPd
  • 2021
  • Ingår i: Physical Review B. - 2469-9950. ; 103:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantum materials having Dirac fermions in conjunction with superconductivity is believed to be the candidate material to realize exotic physics as well as advanced technology. Angle-resolved photoemission spectroscopy (ARPES), a direct probe of the electronic structure, has been extensively used to study these materials. However, experiments often exhibit conflicting results on dimensionality and momentum of the Dirac fermions (e.g., Dirac states in BiPd, a novel noncentrosymmetric superconductor), which is crucial for the determination of the symmetry, time-reversal invariant momenta, and other emerging properties. Employing high-resolution ARPES at varied conditions, we demonstrated a methodology to identify the location of the Dirac node accurately and discover that the deviation from two dimensionality of the Dirac states in BiPd proposed earlier is not a material property. These results helped to reveal the topology of the anisotropy of the Dirac states accurately. We have constructed a model Hamiltonian considering higher-order spin-orbit terms and demonstrate that this model provides an excellent description of the observed anisotropy. Intriguing features of the Dirac states in a noncentrosymmetric superconductor revealed in this study are expected to have significant implications regarding the properties of topological superconductors.
  •  
5.
  • Pramanik, Arindam, et al. (författare)
  • Surface states in noncentrosymmetric superconductor BiPd
  • 2022
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 2164
  • Konferensbidrag (refereegranskat)abstract
    • BiPd is a noncentrosymmetric superconductor with Dirac-like surface states on both (010) and (01¯0) faces. The Dirac cone on (010) surface is intense and appears at 0.66 eV binding energy. These states have drawn much attention due to contradictory reports on dimensionality and the momentum of these Dirac fermions. We have studied the properties of these Dirac fermions using varied photon energies and different experimental conditions. The behavior of the Dirac cone is found to be two-dimensional. In addition, we found few more surface states appearing at higher binding energies compared to the Dirac cone.
  •  
6.
  •  
7.
  • Yakushev, A., et al. (författare)
  • First Study on Nihonium (Nh, Element 113) Chemistry at TASCA
  • 2021
  • Ingår i: Frontiers in Chemistry. - : Frontiers Media SA. - 2296-2646. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Nihonium (Nh, element 113) and flerovium (Fl, element 114) are the first superheavy elements in which the 7p shell is occupied. High volatility and inertness were predicted for Fl due to the strong relativistic stabilization of the closed 7p1/2 sub-shell, which originates from a large spin-orbit splitting between the 7p1/2 and 7p3/2 orbitals. One unpaired electron in the outermost 7p1/2 sub-shell in Nh is expected to give rise to a higher chemical reactivity. Theoretical predictions of Nh reactivity are discussed, along with results of the first experimental attempts to study Nh chemistry in the gas phase. The experimental observations verify a higher chemical reactivity of Nh atoms compared to its neighbor Fl and call for the development of advanced setups. First tests of a newly developed detection device miniCOMPACT with highly reactive Fr isotopes assure that effective chemical studies of Nh are within reach.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy