SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Makki Kassem) srt2:(2023)"

Sökning: WFRF:(Makki Kassem) > (2023)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Makki, Kassem, et al. (författare)
  • 6 alpha-hydroxylated bile acids mediate TGR5 signalling to improve glucose metabolism upon dietary fiber supplementation in mice
  • 2023
  • Ingår i: Gut. - : BMJ. - 0017-5749 .- 1468-3288. ; 72:2, s. 314-324
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Dietary fibres are essential for maintaining microbial diversity and the gut microbiota can modulate host physiology by metabolising the fibres. Here, we investigated whether the soluble dietary fibre oligofructose improves host metabolism by modulating bacterial transformation of secondary bile acids in mice fed western-style diet. Design To assess the impact of dietary fibre supplementation on bile acid transformation by gut bacteria, we fed conventional wild-type and TGR5 knockout mice western-style diet enriched or not with cellulose or oligofructose. In addition, we used germ-free mice and in vitro cultures to evaluate the activity of bacteria to transform bile acids in the caecal content of mice fed with western-style diet enriched with oligofructose. Finally, we treated wild-type and TGR5 knockout mice orally with hyodeoxycholic acid to assess its antidiabetic effects. Results We show that oligofructose sustains the production of 6 alpha-hydroxylated bile acids from primary bile acids by gut bacteria when fed western-style diet. Mechanistically, we demonstrated that the effects of oligofructose on 6 alpha-hydroxylated bile acids were microbiota dependent and specifically required functional TGR5 signalling to reduce body weight gain and improve glucose metabolism. Furthermore, we show that the 6 alpha-hydroxylated bile acid hyodeoxycholic acid stimulates TGR5 signalling, in vitro and in vivo, and increases GLP-1R activity to improve host glucose metabolism. Conclusion Modulation of the gut microbiota with oligofructose enriches bacteria involved in 6 alpha-hydroxylated bile acid production and leads to TGR5-GLP1R axis activation to improve body weight and metabolism under western-style diet feeding in mice.
  •  
2.
  • Schwarzer, M., et al. (författare)
  • Microbe-mediated intestinal NOD2 stimulation improves linear growth of undernourished infant mice
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 379:6634
  • Tidskriftsartikel (refereegranskat)abstract
    • The intestinal microbiota is known to influence postnatal growth. We previously found that a strain of Lactiplantibacillus plantarum (strain LpWJL) buffers the adverse effects of chronic undernutrition on the growth of juvenile germ-free mice. Here, we report that LpWJLsustains the postnatal growth of malnourished conventional animals and supports both insulin-like growth factor-1 (IGF-1) and insulin production and activity. We have identified cell walls isolated from LpWJL, as well as muramyl dipeptide and mifamurtide, as sufficient cues to stimulate animal growth despite undernutrition. Further, we found that NOD2 is necessary in intestinal epithelial cells for LpWJL-mediated IGF-1 production and for postnatal growth promotion in malnourished conventional animals. These findings indicate that, coupled with renutrition, bacteria cell walls or purified NOD2 ligands have the potential to alleviate stunting.
  •  
3.
  • Sjöland, Wilhelm, et al. (författare)
  • Absence of gut microbiota reduces neonatal survival and exacerbates liver disease in Cyp2c70-deficient mice with a human-like bile acid composition
  • 2023
  • Ingår i: Clinical Science. - 0143-5221. ; 137:13, s. 995-1011
  • Tidskriftsartikel (refereegranskat)abstract
    • Mice with deletion of Cyp2c70 have a human-like bile acid composition, display age-and sex-dependent signs of hepatobiliary disease and can be used as a model to study interactions between bile acids and the gut microbiota in cholestatic liver disease. In the present study, we rederived Cyp2c70-/- mice as germ-free (GF) and colonized them with a human or a mouse microbiota to investigate whether the presence of a microbiota can be protective in cholangiopathic liver disease associated with Cyp2c70-deficiency. GF Cyp2c70-/- mice showed reduced neonatal survival, liver fibrosis, and distinct cholangiocyte proliferation. Colonization of germ-free breeding pairs with a human or a mouse microbiota normalized neonatal survival of the offspring, and particularly colonization with mouse microbiota from a conventionally raised mouse improved the liver phenotype at 6-10 weeks of age. The improved liver phenotype in conventionalized (CD) Cyp2c70-/- mice was associated with increased levels of tauro-ursodeoxycholic acid (TUDCA) and UDCA, resulting in a more hydrophilic bile acid profile compared with GF and humanized Cyp2c70-/- mice. The hydrophobicity index of biliary bile acids of CD Cyp2c70-/- mice was associated with changes in gut microbiota, liver weight, liver transaminases, and liver fibrosis. Hence, our results indicate that neonatal survival of Cyp2c70-/- mice seems to depend on the establishment of a gut microbiota at birth, and the improved liver phenotype in CD Cyp2c70-/- mice may be mediated by a larger proportion of TUDCA/UDCA in the circulating bile acid pool and/or by the presence of specific bacteria.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy