SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Makoveichuk Elena) srt2:(2010-2014)"

Sökning: WFRF:(Makoveichuk Elena) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mahmood, Dana, 1965-, et al. (författare)
  • Response of angiopoietin-like proteins 3 and 4 to haemodialysis
  • 2014
  • Ingår i: International Journal of Artificial Organs. - : SAGE Publications. - 0391-3988 .- 1724-6040. ; 37:1, s. 13-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/Aim: Patients on chronic hemodialysis (cHD) have decreased activity of lipoprotein lipase (LPL). Angiopoietin-like proteins (ANGPTL) 3 and 4 have been shown to inactivate LPL. The aim of this study was to investigate the levels of the ANGPTLs in plasma of cHD-patients and to evaluate if cHD may alter these levels. Material and methods: Baseline data were collected from cHD patients (n = 23), and controls (n = 23) and samples were analyzed from 17 patients during low-flux or high-flux HD, and from ultrafiltrate (n = 5). The levels of ANGPTL3 and 4, LPL and triglycerides were studied in a cross-over design on cHD with local citrate compared to tinzaparin as anticoagulant. Results: The level of ANGPTL3 was higher than ANGPTL4 in patients and controls (p<0.01); the ANGPTL3 was 2.0 and ANGPTL4 was 3.3-fold higher in cHD versus controls. The levels of ANGPTL4 increased during cHD. After 180 min of HD the values had decreased again. When the dialysis was performed with high-flux filter, the mean level of ANGPTL4 at 180 min was below the value observed before cHD (p = 0.003). There was immunoreaction for ANGPTL4 in UFs when using high-flux, but not with low-flux, filter. ANGPTL3 was not detectable in UF. On cHD with citrate, no LPL activity was released into the blood. Conclusions: ANGPTL3 and ANGPTL4 were increased in HD patients. Anticoagulation with tinzaparin during cHD causes release of ANGPTL4 from tissues into blood. cHD using high-flux filters, to some extent, removed ANGPTL4. With citrate the levels of ANGPTL4 decreased.
  •  
2.
  • Makoveichuk, Elena, et al. (författare)
  • Inactivation of lipoprotein lipase in 3T3-L1 adipocytes by angiopoietin-like protein 4 requires that both proteins have reached the cell surface
  • 2013
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - : Elsevier. - 0006-291X .- 1090-2104. ; 441:4, s. 941-946
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipoprotein lipase (LPL) and angiopoietin-like protein 4 (Angptl4) were studied in 3T3-L1 adipocytes. Transfections of the adipocytes with Angptl4 esiRNA caused reduction of the expression of Angptl4 to about one fourth of that in cells treated with vehicle only. This resulted in higher levels of LPL activity both on cell surfaces (heparin-releasable) and in the medium, while LPL activity within the cells remained unaffected. This demonstrated that even though both proteins are made in the same cell, Angptl4 does not inactivate LPL during intracellular transport. Most of the Angptl4 protein was present as covalent dimers and tetramers on cell surfaces, while within the cells there were only monomers. LPL gradually lost activity when incubated in medium, but there was no marked difference between conditioned medium from normal cells (rich in Angptl4) and medium after knockdown of Angptl4. Hence Angptl4 did not markedly accelerate inactivation of LPL in the medium. Experiments with combinations of different cells and media indicated that inactivation of LPL occurred on the surfaces of cells producing Angptl4. (C) 2013 Elsevier Inc. All rights reserved.
  •  
3.
  • Makoveichuk, Elena, et al. (författare)
  • Inactivation of lipoprotein lipase occurs on the surface of THP-1 macrophages where oligomers of angiopoietin-like protein 4 are formed
  • 2012
  • Ingår i: Biochemical and Biophysical Research Communications - BBRC. - San Diego : Elsevier. - 0006-291X .- 1090-2104. ; 425:2, s. 138-143
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like protein (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPAR delta agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed. (c) 2012 Elsevier Inc. All rights reserved.
  •  
4.
  • Olivecrona, Gunilla, et al. (författare)
  • Mutation of conserved cysteines in the Ly6 domain of GPIHBP1 in familial chylomicronemia
  • 2010
  • Ingår i: Journal of Lipid Research. - New York : Rockefeller U.P.. - 0022-2275 .- 1539-7262. ; 51:6, s. 1535-1545
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated a family from northern Sweden in which three of four siblings have congenital chylomicronemia. Lipoprotein lipase (LPL) activity and mass in pre- and post-heparin plasma were low, and LPL release into plasma after heparin injection was delayed. LPL activity and mass in adipose tissue biopsies appeared normal. [35S]Methionine incorporation studies on adipose tissue showed that newly synthesized LPL was normal in size and normally glycosylated. Breast milk from the affected female subjects contained normal to elevated LPL mass and activity levels. The milk had a lower than normal milk lipid content, and the fatty acid composition was compatible with the milk lipids being derived from de novo lipogenesis, rather than from the plasma lipoproteins. Given the delayed release of LPL into the plasma after heparin, we suspected that the chylomicronemia might be caused by mutations in GPIHBP1. Indeed, all three affected siblings were compound heterozygotes for missense mutations involving highly conserved cysteines in the Ly6 domain of GPIHBP1 (C65S and C68G). The mutant GPIHBP1 proteins reached the surface of transfected CHO cells but were defective in their ability to bind LPL (as judged by both cell-based and cell-free LPL binding assays). Thus, the conserved cysteines in the Ly6 domain are crucial for GPIHBP1 function.
  •  
5.
  • Ruge, Toralph, et al. (författare)
  • Effects of hyperinsulinemia on lipoprotein lipase, angiopoietin-like protein 4, and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in subjects with and without type 2 diabetes mellitus
  • 2012
  • Ingår i: Metabolism. - : Elsevier BV. - 0026-0495 .- 1532-8600. ; 61:5, s. 652-660
  • Tidskriftsartikel (refereegranskat)abstract
    • Our aims were to compare the systemic effects of insulin on lipoprotein lipase (LPL) in tissues from subjects with different degrees of insulin sensitivity. The effects of insulin on LPL during a 4-hour hyperinsulinemic, euglycemic clamp were studied in skeletal muscle, adipose tissue, and postheparin plasma from young healthy subjects (YS), older subjects with type 2 diabetes mellitus (DS), and older control subjects (CS). In addition, we studied the effects of insulin on the expression of 2 recently recognized candidate genes for control of LPL activity: angiopoietin-like protein 4 (ANGPTL4) and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1. As an effect of insulin, LPL activity decreased by 20% to 25% in postheparin plasma and increased by 20% to 30% in adipose tissue in all groups. In YS, the levels of ANGPTL4 messenger RNA in adipose tissue decreased 3-fold during the clamp. In contrast, there was no significant change in DS or CS. Regression analysis showed that the ability of insulin to reduce the expression of ANGPTL4 was positively correlated with M-values and inversely correlated with factors linked to the metabolic syndrome. Expression of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 tended to be higher in YS than in DS or CS, but the expression was not affected by insulin in any of the groups. Our data imply that the insulin-mediated regulation of LPL is not directly linked to the control of glucose turnover by insulin or to ANGPTL4 expression in adipose tissue or plasma. Interestingly, the response of ANGPTL4 expression in adipose tissue to insulin was severely blunted in both DS and CS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy