SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Makuška Ričardas) srt2:(2010-2014)"

Sökning: WFRF:(Makuška Ričardas) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bijelic, Goran, et al. (författare)
  • Adsorption characteristics of brush polyelectrolytes on silicon oxynitride revealed by dual polarisation interferometry
  • 2010
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 0021-9797 .- 1095-7103. ; 348, s. 189-197
  • Tidskriftsartikel (refereegranskat)abstract
    • Adsorption properties of bottle-brush polyelectrolytes have been investigated using dual polarization interferometry (DPI), which provides real time monitoring of adsorbed layer thickness and refractive index. The adsorption on silicon oxynitride was carried out from aqueous solution with no added inorganic salt, and the adsorbed polyelectrolyte layer was subsequently rinsed with NaCl solutions of increasing concentration. The bottle-brush polyelectrolytes investigated in this study have different ratios of permanent cationic charged segments and uncharged PEO side chains. Both the cationic groups and the PEO side chains have affinity for silica-like surfaces, and thus contribute to the adsorption process that becomes rather complex. Adsorption properties in water, responses to changes in ionic strength of the surrounding medium, adsorption kinetics and the layer structure are all strongly dependent on the ratio between backbone charges and side chains. The results are interpreted in terms of competitive adsorption of segments with different chemical nature. The adsorption kinetics is relatively fast, taking only tens to hundreds of seconds when adsorbed from dilute 100 ppm solutions. The DPI technique was found to be suitable for studying such rapid adsorption processes, including determination of the initial adsorption kinetics. We expect that the effects observed in this study are of general importance for synthetic and biological polymers carrying segments of different nature.
  •  
2.
  • Liu, Xiaoyan, et al. (författare)
  • Low friction and high load bearing capacity layers formed by cationic-block-non-ionic bottle-brush copolymers in aqueous media
  • 2013
  • Ingår i: Soft Matter. - : Royal Society of Chemistry (RSC). - 1744-683X .- 1744-6848. ; 9:22, s. 5361-5371
  • Tidskriftsartikel (refereegranskat)abstract
    • Efficient lubricants should be able to build surface layers that result in low friction and high load bearing capacity. In this work we show how this can be achieved in aqueous media by means of adsorption of a diblock copolymer consisting of a cationic anchor block without side chains and an uncharged and hydrophilic bottle-brush block that protrudes into solution. Surface and friction forces were measured between negatively charged silica surfaces coated with adsorbed layers of the cationic diblock copolymer, utilizing the atomic force microscope colloidal probe technique. The interactions between the surfaces coated with this copolymer in water are purely repulsive, due to a combination of steric and electrostatic double-layer forces, and no hysteresis is observed between forces measured on approach and separation. Friction forces between the diblock copolymer layers are characterized by a low friction coefficient, μ ≈ 0.03-0.04. The layers remain intact under high load and shear due to the strong electrostatic anchoring, and no destruction of the layer was noted even under the highest pressure employed (about 50 MPa). Addition of NaCl to a concentration of 155 mM weakens the anchoring of the copolymer to the substrate surface, and as a result the friction force increases.
  •  
3.
  • Olanya, Geoffrey, et al. (författare)
  • Protein Interactions with Bottle-Brush Polymer Layers : Effect of Side Chain and Charge Density Ratio Probed by QCM-D and AFM
  • 2010
  • Ingår i: Journal of Colloid and Interface Science. - : Elsevier BV. - 0021-9797 .- 1095-7103. ; 349:1, s. 265-274
  • Tidskriftsartikel (refereegranskat)abstract
    • Silica surfaces were coated with a range of cationic bottle-brush polymers with 45 units long poly(ethylene oxide) side chains, and their efficiency in reducing protein adsorption was probed by QCM-D, reflectometry and AFM. Preadsorbed layers formed by bottle-brush polymers with different side chain to charge ratio was exposed to two proteins with different net charge, lysozyme and BSA. The reduction in protein adsorption was found to depend on both the type of protein and on the nature of the polyelectrolyte layer. The most pronounced reduction in protein adsorption was achieved when the fraction of charged backbone segments was in the range 0.25-0.5 equivalent to a fraction of poly(ethylene oxide) side chains of 0.75-0.5. It was concluded that these polymers have enough electrostatic attachment points to ensure a strong binding to the surface, and at the same time a sufficient amount of poly(ethylene oxide) side chains to counteract protein adsorption. In contrast, a layer formed by a highly charged polyelectrolyte without side chains was unable to resists protein adsorption. On such a layer the adsorption of negatively charged BSA was strongly enhanced, and positively charged lysozyme adsorbed to a similar extent as to bare silica. AFM colloidal probe force measurement between silica surfaces with preadsorbed layers of bottle-brush polymers were conducted before and after exposure to BSA and lysozyme to gain insight into how proteins were incorporated in the bottle-brush polymer layers.
  •  
4.
  • Shovsky, Alexander, et al. (författare)
  • Adsorption and Solution Properties of Bottle-Brush Polyelectrolyte Complexes : Effect of Molecular Weight and Stoichiometry
  • 2012
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 28:16, s. 6618-6631
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyelectrolyte complexes (PECs) self-assembled from bottle-brush polyelectrolytes, having a cationic main chain and uncharged side chains, and linear anionic sodium polystyrenesulfonate (NaPSS) have been investigated with emphasis on (i) the charge density and side chain density of the bottle-brush polyelectrolyte, (ii) the molecular weight of NaPSS, and (iii) the charge stoichiometry of the mixture. Light scattering and electrophoretic mobility data demonstrate that small molecular complexes are formed when the PEO45 side chain density is sufficiently high to provide steric stabilization and prevent PEC aggregation. The adsorption of PECs on negatively charged silicon oxynitride was investigated using dual polarization interferometry, and the time evolution of the adsorbed amount and thickness was determined. Cationic, uncharged, and negatively charged complexes all adsorb to negatively charged silicon oxynitride, and maximum adsorption is achieved for positively charged complexes containing small amounts of PSS. The adsorbed amount and the kinetics of adsorption are reduced with increasing PSS content, and for any given stoichiometry with increasing PSS molecular weight. These findings are discussed in terms of the PEC structure and the ability of anionic polyelectrolytes to leave the PECs during adsorption.
  •  
5.
  • Shovsky, Oleksandr, et al. (författare)
  • Adsorption Characteristics of Stoichiometric and Nonstoichiometric Molecular Polyelectrolyte Complexes on Silicon Oxynitride Surfaces
  • 2011
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 27:3, s. 1044-1050
  • Tidskriftsartikel (refereegranskat)abstract
    • Adsorption properties of stoichiometric and nonstoichiometric polyelectrolyte complexes (PECs) have been investigated by means of dual polarization interferometry (DPI) and X-ray photoelectron spectroscopy (XPS). Poly(sodium styrenesulfonate) (NaPSS) of molecular weight 4300 g/mol was used as polyanion, and two bottle-brush copolymers possessing different molar ratios of the cationic segment methacryloxyethyltrimethylammonium chloride (METAC) and the nonionic segment poly(ethylene oxide) methyl ether methacrylate (PEO(45)MEMA) were used as polycations. They are referred to as PEO(45)MEMA:METAC-25 and PEO(45)MEMA:METAC-50, where the last digits denote the mol % of charged main-chain segments. The time evolution of the adsorbed amount, thickness, and refractive index of the PEC layers were determined in aqueous solution using DPI. We demonstrate that cationic, uncharged, and negatively charged complexes adsorb to negatively charged silicon oxynitride and that maximum adsorption is achieved when small amounts of PSS are present in the complexes. The surface composition of the adsorbed PEC layers was estimated from XPS measurements that demonstrated very low content of NaPSS. On the basis of these data, the PEC adsorption mechanism is discussed and the competition between PSS and negative surface sites for association with the cationic polyelectrolyte is identified as a key issue.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy