SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mamajek Eric E.) srt2:(2021)"

Sökning: WFRF:(Mamajek Eric E.) > (2021)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Leisawitz, David, et al. (författare)
  • Origins Space Telescope: Baseline mission concept
  • 2021
  • Ingår i: Journal of Astronomical Telescopes, Instruments, and Systems. - 2329-4221 .- 2329-4124. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20 μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588 μm, making wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins' natural background-limited sensitivity.
  •  
2.
  • Meixner, Margaret, et al. (författare)
  • Origins Space Telescope science drivers to design traceability
  • 2021
  • Ingår i: Journal of Astronomical Telescopes, Instruments, and Systems. - 2329-4221 .- 2329-4124. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Origins Space Telescope (Origins) concept is designed to investigate the creation and dispersal of elements essential to life, the formation of planetary systems, and the transport of water to habitable worlds and the atmospheres of exoplanets around nearby K-and M-dwarfs to identify potentially habitable-and even inhabited-worlds. These science priorities are aligned with NASA's three major astrophysics science goals: How does the Universe work? How did we get here? and Are we alone? We briefly describe the science case that arose from the astronomical community and the science traceability matrix for Origins. The science traceability matrix prescribes the design of Origins and demonstrates that it will address the key science questions motivated by the science case.
  •  
3.
  • Janson, Markus, et al. (författare)
  • A wide-orbit giant planet in the high-mass b Centauri binary system
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 600:7888
  • Tidskriftsartikel (refereegranskat)abstract
    • Planet formation occurs around a wide range of stellar masses and stellar system architectures1. An improved understanding of the formation process can be achieved by studying it across the full parameter space, particularly towards the extremes. Earlier studies of planets in close-in orbits around high-mass stars have revealed an increase in giant planet frequency with increasing stellar mass2 until a turnover point at 1.9 solar masses (M⊙), above which the frequency rapidly decreases3. This could potentially imply that planet formation is impeded around more massive stars, and that giant planets around stars exceeding 3 M⊙ may be rare or non-existent. However, the methods used to detect planets in small orbits are insensitive to planets in wide orbits. Here we demonstrate the existence of a planet at 560 times the Sun–Earth distance from the 6- to 10-M⊙ binary b Centauri through direct imaging. The planet-to-star mass ratio of 0.10–0.17% is similar to the Jupiter–Sun ratio, but the separation of the detected planet is about 100 times wider than that of Jupiter. Our results show that planets can reside in much more massive stellar systems than what would be expected from extrapolation of previous results. The planet is unlikely to have formed in situ through the conventional core accretion mechanism4, but might have formed elsewhere and arrived to its present location through dynamical interactions, or might have formed via gravitational instability.
  •  
4.
  • Zhang, Yapeng, et al. (författare)
  • The 13CO-rich atmosphere of a young accreting super-Jupiter
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 595:7867, s. 370-372
  • Tidskriftsartikel (refereegranskat)abstract
    • Isotope abundance ratios have an important role in astronomy and planetary sciences, providing insights into the origin and evolution of the Solar System, interstellar chemistry and stellar nucleosynthesis1,2. In contrast to deuterium/hydrogen ratios, carbon isotope ratios are found to be roughly constant (around 89) in the Solar System1,3, but do vary on galactic scales with a 12C/13C isotopologue ratio of around 68 in the current local interstellar medium4–6. In molecular clouds and protoplanetary disks, 12CO/13CO ratios can be altered by ice and gas partitioning7, low-temperature isotopic ion-exchange reactions8 and isotope-selective photodissociation9. Here we report observations of 13CO in the atmosphere of the young, accreting super-Jupiter TYC 8998-760-1 b, at a statistical significance of more than six sigma. Marginalizing over the planet’s atmospheric temperature structure, chemical composition and spectral calibration uncertainties suggests a 12CO/13CO ratio of 31−10+17(90% confidence), a substantial enrichment in 13C with respect to the terrestrial standard and the local interstellar value. As the current location of TYC 8998-760-1 b at greater than or equal to 160 astronomical units is far beyond the CO snowline, we postulate that it accreted a substantial fraction of its carbon from ices enriched in 13C through fractionation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy