SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mammo W.) srt2:(2020-2024)"

Sökning: WFRF:(Mammo W.) > (2020-2024)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aguilar, J. A., et al. (författare)
  • Triboelectric backgrounds to radio-based polar ultra-high energy neutrino (UHEN) experiments
  • 2023
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 145
  • Tidskriftsartikel (refereegranskat)abstract
    • In the hopes of observing the highest-energy neutrinos (E> 1 EeV) populating the Universe, both past (RICE, AURA, ANITA) and current (RNO-G, ARIANNA, ARA and TAROGE-M) polar-sited experiments exploit the impulsive radio emission produced by neutrino interactions. In such experiments, rare single event candidates must be unambiguously identified above backgrounds. Background rejection strategies to date primarily target thermal noise fluctuations and also impulsive radio-frequency signals of anthropogenic origin. In this paper, we consider the possibility that 'fake' neutrino signals may also be generated naturally via the `triboelectric effect' This broadly describes any process in which force applied at a boundary layer results in displacement of surface charge, leading to the production of an electrostatic potential difference AV. Wind blowing over granular surfaces such as snow can induce such a potential difference, with subsequent coronal discharge. Discharges over timescales as short as nanoseconds can then lead to radio-frequency emissions at characteristic MHz-GHz frequencies. Using data from various past (RICE, AURA, SATRA, ANITA) and current (RNO G, ARIANNA and ARA) neutrino experiments, we find evidence for such backgrounds, which are generally characterized by: (a) a threshold wind velocity which likely depends on the experimental trigger criteria and layout; for the experiments considered herein, this value is typically O(10 m/s), (b) frequency spectra generally shifted to the low-end of the frequency regime to which current radio experiments are typically sensitive (100-200 MHz), (c) for the strongest background signals, an apparent preference for discharges from above-surface structures, although the presence of more isotropic, lower amplitude triboelectric discharges cannot be excluded.
  •  
2.
  • Bian, Qingzhen, et al. (författare)
  • Reduced Nonradiative Voltage Loss in Terpolymer Solar Cells
  • 2020
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 11:10, s. 3796-3802
  • Tidskriftsartikel (refereegranskat)abstract
    • The dissociation of hybrid local exciton and charge transfer excitons (LE-CT) in efficient bulk-heterojunction nonfullerene solar cells contributes to reduced nonradiative photovoltage loss, a mechanism that still remains unclear. Herein we studied the energetic and entropic contribution in the hybrid LE-CT exciton dissociation in devices based on a conjugated terpolymer. Compared with reference devices based on ternary blends, the terpolymer devices demonstrated a significant reduction in the nonradiative photovoltage loss, regardless of the acceptor molecule, be it fullerene or nonfullerene. Fourier transform photocurrent spectroscopy revealed a significant LE-CT character in the terpolymer-based solar cells. Temperature-dependent hole mobility and photovoltage confirm that entropic and energetic effects contribute to the efficient LE-CT dissociation. The energetic disorder value measured in the fullerene- or nonfullerene-based terpolymer devices suggested that this entropic contribution came from the terpolymer, a signature of higher disorder in copolymers with multiple aromatic groups. This gives new insight into the fundamental physics of efficient LE-CT exciton dissociation with smaller nonradiative recombination loss.
  •  
3.
  • Chvojka, Petr, et al. (författare)
  • Expanded Multiband Super-Nyquist CAP Modulation for Highly Bandlimited Organic Visible Light Communications
  • 2020
  • Ingår i: IEEE Systems Journal. - 1932-8184 .- 1937-9234. ; 14:2, s. 2544-2550
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article, we experimentally demonstrate a novel expanded nonorthogonal multiband super-Nyquist carrier-less amplitude and phase (m-ESCAP) modulation for bandlimited organic visible light communication (VLC) systems. The proposed scheme has the same bandwidth requirement as the conventional m-CAP while breaking the orthogonality between subcarriers by purposely overlapping them. We compare m-ESCAP with the conventional m-CAP and a compressed nonorthogonal version of m-CAP (m-SCAP) in terms of measured bit error rate (BER) performance, bit rates, and spectral efficiencies. We show that the m-ESCAP system offers improvement in the bit rate of $\sim$10% and 20% compared to the m-CAP and m-SCAP, respectively, and in the spectral efficiency of $\sim$20% compared to m-CAP. These gains are achieved at the cost of increased BER, which, however, remains below the 7% forward error correction limit.
  •  
4.
  • Filate, Tadele Tamenu, 1994, et al. (författare)
  • Aqueous Processed All-Polymer Solar Cells with High Open-Circuit Voltage Based on Low-Cost Thiophene-Quinoxaline Polymers
  • 2024
  • Ingår i: ACS Applied Materials & Interfaces. - : American Chemical Society (ACS). - 1944-8252 .- 1944-8244. ; 16:10, s. 12886-12896
  • Tidskriftsartikel (refereegranskat)abstract
    • Eco-friendly solution processing and the low-cost synthesis of photoactive materials are important requirements for the commercialization of organic solar cells (OSCs). Although varieties of aqueous-soluble acceptors have been developed, the availability of aqueous-processable polymer donors remains quite limited. In particular, the generally shallow highest occupied molecular orbital (HOMO) energy levels of existing polymer donors limit further increases in the power conversion efficiency (PCE). Here, we design and synthesize two water/alcohol-processable polymer donors, poly[(thiophene-2,5-diyl)-alt-(2-((13-(2,5,8,11-tetraoxadodecyl)-2,5,8,11-tetraoxatetradecan-14-yl)oxy)-6,7-difluoroquinoxaline-5,8-diyl)] (P(Qx8O-T)) and poly[(selenophene-2,5-diyl)-alt-(2-((13-(2,5,8,11-tetraoxadodecyl)-2,5,8,11-tetraoxatetradecan-14-yl)oxy)-6,7-difluoroquinoxaline-5,8-diyl)] (P(Qx8O-Se)) with oligo(ethylene glycol) (OEG) side chains, having deep HOMO energy levels (∼−5.4 eV). The synthesis of the polymers is achieved in a few synthetic and purification steps at reduced cost. The theoretical calculations uncover that the dielectric environmental variations are responsible for the observed band gap lowering in OEG-based polymers compared to their alkylated counterparts. Notably, the aqueous-processed all-polymer solar cells (aq-APSCs) based on P(Qx8O-T) and poly[(N,N′-bis(3-(2-(2-(2-methoxyethoxy)-ethoxy)ethoxy)-2-((2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-methyl)propyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl)-alt-(2,5-thiophene)] (P(NDIDEG-T)) active layer exhibit a PCE of 2.27% and high open-circuit voltage (VOC) approaching 0.8 V, which are among the highest values for aq-APSCs reported to date. This study provides important clues for the design of low-cost, aqueous-processable polymer donors and the fabrication of aqueous-processable OSCs with high VOC
  •  
5.
  • Filate, Tadele Tamenu, 1994, et al. (författare)
  • Hydrophilic Conjugated Polymers for Sustainable Fabrication of Deep-Red Light-Emitting Electrochemical Cells
  • 2024
  • Ingår i: Advanced Materials Technologies. - : John Wiley & Sons. - 2365-709X. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • It is crucial to develop functional electronic materials that can be processed from green solvents to achieve environmentally sustainable and cost-efficient printing fabrication of organic electronic devices. Here, the design and cost-efficient synthesis of two hydrophilic and emissive conjugated polymers, TQ-OEG and TQ2F-OEG, are presented, which are rendered hydrophilic through the grafting of oligo(ethylene glycol) (OEG) solubilizing groups onto the thiophene-quinoxaline conjugated backbone and thereby can be processed from a water:ethanol solvent mixture. It is shown that the introduction of the OEG groups enables for a direct dissolution of salts by the neat polymer for the attainment of solid-state ion mobility. These properties are utilized for the design and development of light-emitting electrochemical cells (LECs), the active materials of which can be solution cast from a water:ethanol-based ink. It is specifically shown that such an LEC device, comprising an optimized blend of the TQ2F-OEG emitter and a Li salt as the active material positioned between two air-stabile electrodes, delivers deep-red emission (peak wavelength = 670 nm) with a radiance of 185 µW m−2 at a low drive voltage of 2.3 V. This study contributes relevant information as to how polymers and LEC devices can be designed and fabricated to combine functionality with sustainability.
  •  
6.
  • Genene, Zewdneh, 1983, et al. (författare)
  • Comparative study on the effects of alkylsilyl and alkylthio side chains on the performance of fullerene and non-fullerene polymer solar cells
  • 2020
  • Ingår i: Organic Electronics: physics, materials, applications. - : Elsevier BV. - 1566-1199. ; 77
  • Tidskriftsartikel (refereegranskat)abstract
    • Two novel high gap donor polymers – PBDTTSi-TzBI and PBDTTS-TzBI, based on imide-fused benzotriazole (TzBI) with asymmetric side chains and alkylsilyl (Si) or alkylthio (S) substituted 4,8-di(thien-2-yl)benzo-[1,2-b:4,5-b′]dithiophene (BDTT) – are successfully synthesized. The effect of the side chain variation on the photophysical, morphological and photovoltaic properties of blends of these polymers with fullerene and non-fullerene acceptors is investigated. The PBDTTSi-TzBI polymer shows a deeper highest occupied molecular orbital energy level, which results in higher open-circuit voltages. Nevertheless, the polymer solar cells fabricated using PBDTTS-TzBI in combination with PC71BM afford a higher power conversion efficiency of 7.3% (vs 4.0% for PBDTTSi-TzBI:PC71BM). By using the non-fullerene acceptor ITIC, the absorption of the blends extends to 850 nm and better device efficiencies are achieved, 6.9% and 9.6% for PBDTTSi-TzBI:ITIC and BDTTS-TzBI:ITIC, respectively. The better performance of the PBDTTS-TzBI:ITIC-based devices is attributed to the strong and broad absorption and balanced charge transport, and is among the best performances reported for non-fullerene solar cells based on TzBI-containing polymer donors.
  •  
7.
  • Mone, Mariza, 1992, et al. (författare)
  • Near-Infrared Emission by Tuned Aggregation of a Porphyrin Compound in a Host–Guest Light-Emitting Electrochemical Cell
  • 2021
  • Ingår i: Advanced Optical Materials. - : Wiley. - 2195-1071 .- 2162-7568. ; 9:6
  • Tidskriftsartikel (refereegranskat)abstract
    • The synthesis of 5,10,15,20-tetrakis((5,10-bis((2-hexyldecyl)oxy)dithieno[3,2-c:3′,2′-h][1,5]naphthyridin-2-yl)ethynyl)porphyrin zinc(II) (Por4NT), a near-infrared (NIR) emitting compound, comprising a zinc porphyrin core linked with triple bonds through its meso positions to four 5,10-bis((2-hexyldecyl)oxy)dithieno[3,2-c:3′,2′-h][1,5]naphthyridine (NT) arms is reported. Por4NT featured high solubility in common non-polar solvents, which is ideal for easy processing through solution techniques, and high photoluminescence (PL) efficiency of ≈30% in dilute toluene solution. It also exhibited a strong tendency for aggregation because of its flat conformation, and this aggregation resulted in a strong redshifted emission and a drop in PL efficiency. A well-matched PBDTSi-BDD-Py “host” terpolymer is therefore designed, which is capable of mitigating the aggregation of the Por4NT “guest”. An optimized blend of the host, guest, and an ionic-liquid electrolyte is utilized as the active material in a light-emitting electrochemical cell (LEC), which delivered strong NIR radiance of 134 µW cm-2 with a long wavelength maximum at 810 nm at a low drive voltage of 5.0 V. The attainment of the strong NIR emission from the host–guest LEC is attributed to a tuned aggregation of the Por4NT emitter, which resulted in the desired aggregation-induced redshift of the emission at a reasonably retained efficiency.
  •  
8.
  • Nchinda, Leonato Tambua, et al. (författare)
  • Unveiling the thermal stability of diketopyrrolopyrrole-based terpolymers: a key element for enhanced efficiency and stability of organic solar cells
  • 2024
  • Ingår i: New Journal of Chemistry. - 1369-9261 .- 1144-0546. ; 48:22, s. 10201-10212
  • Tidskriftsartikel (refereegranskat)abstract
    • With the advent of novel polymers, organic solar cell (OSC) research has evolved significantly over the past decade. The molecular engineering of terpolymers has allowed for simple morphological control in binary devices over ternary blends, with the highest power conversion efficiencies (PCEs) exceeding 18%. However, research on the stability of OSCs is still lagging behind. In this regard, we examined the thermal stability of a series of terpolymers comprising one electron donor (thienyl-substituted benzodithiophene, BDTT) and two types of electron acceptors namely fluorobenzotriazole (FTAZ) and thienothiophene-capped diketopyrrolopyrrole (TTDPP) and their blends with PC71BM. The terpolymers demonstrated broad absorbance ranging from below 350 nm to 900 nm. The thermal stability of the terpolymers was investigated as pristine thin films and as bulk heterojunction (BHJ) films of the terpolymers blended with PC71BM by heating at 85 °C. We observed that thermal degradation had no sizeable effect on the properties of the pristine terpolymers while the blended films demonstrated significant changes in their morphology due to the inclusion and aggregation of PC71BM. After thermal annealing at 85 °C, the width of the symmetric C=C stretching Raman mode and the C=C/C-C intensity ratio of pristine terpolymers and terpolymer:PC71BM thin films revealed that incorporation of the FTAZ acceptor improves the thermal stability of the BHJ active layers. Furthermore, prolonged thermal annealing times (>3 hours) resulted in the development of PC71BM aggregates and terpolymer decomposition with no evident changes in the molecular and chemical structure of the terpolymers. Our findings indicate that by gradually annealing the blended films using an appropriate annealing time, the diffusion of PC71BM molecules to form aggregates can be carefully regulated, resulting in a nanostructure critical to the efficiency of organic solar cells.
  •  
9.
  • Waketola, Alemayehu G., et al. (författare)
  • Enhancing the Performance of Wide-Bandgap Polymer-Based Organic Solar Cells through Silver Nanorod Integration
  • 2023
  • Ingår i: ACS Omega. - 2470-1343. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Light trapping induced by the introduction of metallic nanoparticles has been shown to improve photo absorption in organic solar cells (OSCs). Researchers in the fields of plasmonics and organic photovoltaics work together to boost sunlight absorption and photon-electron interactions in order to improve device performance. In this contribution, an inverted OSC was fabricated by using indacenodithieno[3,2-b]thiophene-alt-2,2′-bithiazole (PIDTT-BTz) as a wide-band gap donor copolymer and (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) as an acceptor. Silver nanorods (Ag-NRs), synthesized by precipitation method, were embedded in the active layer of the solar cell. The device fabricated with 1 wt % Ag-NRs in the active layer showed a 26% improvement in power conversion efficiency (PCE) when exposed to 100 mW/cm2 simulated solar illumination. The role of Ag-NRs in the performance improvement of the OSCs was analyzed systematically using morphological, electrical, and optical characterization methods. The light trapping and exciton generation were improved due to the localized surface plasmon resonance (LSPR) activated in Ag-NRs in the form of longitudinal and transverse modes. The photoactive layers (PIDTT-BTz:PC71BM) with the incorporation of 0.5 and 1 wt % Ag-NR showed increased absorption, while the absorption with 1.5 wt % Ag-NRs appeared to be reduced in the wavelength range from 400 to 580 nm. Ag-NRs play a favorable role in exciton photogeneration and dissociation due to the two LSPR modes generated by the Ag-NRs. In the optimized device, the short-circuit current density (JSC) increased from 11.92 to 14.25 mA/cm2, resulting in an increase in the PCE from 3.94 to 4.93%, which is attributed to the improved light-trapping by LSPR using Ag-NRs.
  •  
10.
  • Wolkeba, Zewdneh Genene, 1983, et al. (författare)
  • Recent Advances in the Synthesis of Conjugated Polymers for Supercapacitors
  • 2024
  • Ingår i: Advanced Materials Technologies. - 2365-709X. ; 9:9
  • Forskningsöversikt (refereegranskat)abstract
    • Conjugated polymers have attracted growing attention for versatile applications in energy storage due to their potential benefits including low-cost processing, molecular tunability, environmental benignity, and high mechanical flexibility. In particular, polymer-based organic electrode materials have shown significant progress in supercapacitor (SC) applications with superior electrochemical behaviors. The performances of SCs are closely related to the intrinsic characteristics of different polymers in the nanoscale and the morphological features of the polymer-based electrode materials obtained by different fabrication techniques in the macroscale. This review summarizes the design and synthesis of both p-type and n-type conjugated polymers, highlighting the pros and cons of three synthesis techniques: electrochemical polymerization, chemical polymerization, and in situ polymerization. The performances of conjugated polymers in SCs, their cycling stabilities, and structure-performance relationships are discussed. Moreover, the existing challenges and future directions of polymer-based SCs are considered with respect to energy density, stability, and large-scale production to promote commercialization.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy