SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Manney G.L.) srt2:(2005-2009)"

Sökning: WFRF:(Manney G.L.) > (2005-2009)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Jin, J.J., et al. (författare)
  • Comparison of CMAM simulations of carbon monoxide (CO), nitrous oxide (N2O), and methane (CH4) with observations from Odin/SMR, ACE-FTS, and Aura/MLS
  • 2009
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 9, s. 3233-3252
  • Tidskriftsartikel (refereegranskat)abstract
    • Simulations of CO, N2O and CH4 from a coupled chemistry-climate model (CMAM) are compared with satellite measurements from Odin Sub-Millimeter Radiometer (Odin/SMR), Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS), and Aura Microwave Limb Sounder (Aura/MLS). Pressure-latitude cross-sections and seasonal time series demonstrate that CMAM reproduces the observed global CO, N2O, and CH4 distributions quite well. Generally, excellent agreement with measurements is found between CO simulations and observations in the stratosphere and mesosphere. Differences between the simulations and the ACE-FTS observations are generally within 30%, and the differences between CMAM results and SMR and MLS observations are slightly larger. These differences are comparable with the difference between the instruments in the upper stratosphere and mesosphere. Comparisons of N2O show that CMAM results are usually within 15% of the measurements in the lower and middle stratosphere, and the observations are close to each other. However, the standard version of CMAM has a low N2O bias in the upper stratosphere. The CMAM CH4 distribution also reproduces the observations in the lower stratosphere, but has a similar but smaller negative bias in the upper stratosphere. The negative bias may be due to that the gravity drag is not fully resolved in the model. The simulated polar CO evolution in the Arctic and Antarctic agrees with the ACE and MLS observations. CO measurements from 2006 show evidence of enhanced descent of air from the mesosphere into the stratosphere in the Arctic after strong stratospheric sudden warmings (SSWs). CMAM also shows strong descent of air after SSWs. In the tropics, CMAM captures the annual oscillation in the lower stratosphere and the semiannual oscillations at the stratopause and mesopause seen in Aura/MLS CO and N2O observations and in Odin/SMR N2O observations. The Odin/SMR and Aura/MLS N2O observations also show a quasi-biennial oscillation (QBO) in the upper stratosphere, whereas, the CMAM does not have QBO included. This study confirms that CMAM is able to simulate middle atmospheric transport processes reasonably well.
  •  
3.
  • Lambert, A., et al. (författare)
  • Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:D24
  • Tidskriftsartikel (refereegranskat)abstract
    • The quality of the version 2.2 (v2.2) middle atmosphere water vapor and nitrous oxide measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System (EOS) Aura satellite is assessed. The impacts of the various sources of systematic error are estimated by a comprehensive set of retrieval simulations. Comparisons with correlative data sets from ground-based, balloon and satellite platforms operating in the UV/ visible, infrared and microwave regions of the spectrum are performed. Precision estimates are also validated, and recommendations are given on the data usage. The v2.2 H 2 O data have been improved over v1.5 by providing higher vertical resolution in the lower stratosphere and better precision above the stratopause. The single-profile precision is ∼0.2-0.3 ppmv (4-9%), and the vertical resolution is ∼3-4 km in the stratosphere. The precision and vertical resolution become worse with increasing height above the stratopause. Over the pressure range 0.1-0.01 hPa the precision degrades from 0.4 to 1.1 ppmv (6-34%), and the vertical resolution degrades to ∼12-16 km. The accuracy is estimated to be 0.2-0.5 ppmv (4-11%) for the pressure range 68-0.01 hPa. The scientifically useful range of the H 2 O data is from 316 to 0.002 hPa, although only the 82-0.002 hPa pressure range is validated here. Substantial improvement has been achieved in the v2.2 N 2 O data over v1.5 by reducing a significant low bias in the stratosphere and eliminating unrealistically high biased mixing ratios in the polar regions. The single-profile precision is ∼13-25 ppbv (7-38%), the vertical resolution is ∼4-6 km and the accuracy is estimated to be 3-70 ppbv (9-25%) for the pressure range 100-4.6 hPa. The scientifically useful range of the N 2 O data is from 100 to 1 hPa. Copyright 2007 by the American Geophysical Union.
  •  
4.
  • Randall, C. E., et al. (författare)
  • Stratospheric effects of energetic particle precipitation in 2003-2004
  • 2005
  • Ingår i: Geophysical Research Letters. - 1944-8007 .- 0094-8276. ; 32:5, s. 1-4
  • Tidskriftsartikel (refereegranskat)abstract
    • Upper stratospheric enhancements in NOx (NO and NO2) were observed at high northern latitudes from March through at least July of 2004. Multi-satellite data analysis is used to examine the temporal evolution of the enhancements, to place them in historical context, and to investigate their origin. The enhancements were a factor of 4 higher than nominal at some locations, and are unprecedented in the northern hemisphere since at least 1985. They were accompanied by reductions in O-3 of more than 60% in some cases. The analysis suggests that energetic particle precipitation led to substantial NOx production in the upper atmosphere beginning with the remarkable solar storms in late October 2003 and possibly persisting through January. Downward transport of the excess NOx, facilitated by unique meteorological conditions in 2004 that led to an unusually strong upper stratospheric vortex from late January through March, caused the enhancements.
  •  
5.
  • Santee, M.L., et al. (författare)
  • Validation of the Aura Microwave Limb Sounder ClO Measurements
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:D15
  • Tidskriftsartikel (refereegranskat)abstract
    • We assess the quality of the version 2.2 (v2.2) ClO measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS v2.2 ClO data are scientifically useful over the range 100 to 1 hPa, with a single- profile precision of similar to 0.1 ppbv throughout most of the vertical domain. Vertical resolution is similar to 3-4 km. Comparisons with climatology and correlative measurements from a variety of different platforms indicate that both the amplitude and the altitude of the peak in the ClO profile in the upper stratosphere are well determined by MLS. The latitudinal and seasonal variations in the ClO distribution in the lower stratosphere are also well determined, but a substantial negative bias is present in both daytime and nighttime mixing ratios at retrieval levels below (i. e., pressures larger than) 22 hPa. Outside of the winter polar vortices, this negative bias can be eliminated by subtracting gridded or zonal mean nighttime values from the individual daytime measurements. In studies for which knowledge of lower stratospheric ClO mixing ratios inside the winter polar vortices to better than a few tenths of a ppbv is needed, however, day - night differences are not recommended and the negative bias must be corrected for by subtracting the estimated value of the bias from the individual measurements at each affected retrieval level.
  •  
6.
  • Santee, M.L., et al. (författare)
  • Validation of the Aura Microwave Limb Sounder HNO3 Measurements
  • 2007
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 112:D24
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] We assess the quality of the version 2.2 (v2.2) HNO(3) measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS HNO(3) product has been greatly improved over that in the previous version (v1.5), with smoother profiles, much more realistic behavior at the lowest retrieval levels, and correction of a high bias caused by an error in one of the spectroscopy files used in v1.5 processing. The v2.2 HNO(3) data are scientifically useful over the range 215 to 3.2 hPa, with single-profile precision of similar to 0.7 ppbv throughout. Vertical resolution is 3-4 km in the upper troposphere and lower stratosphere, degrading to similar to 5 km in the middle and upper stratosphere. The impact of various sources of systematic uncertainty has been quantified through a comprehensive set of retrieval simulations. In aggregate, systematic uncertainties are estimated to induce in the v2.2 HNO(3) measurements biases that vary with altitude between +/- 0.5 and +/- 2 ppbv and multiplicative errors of +/- 5-15% throughout the stratosphere, rising to similar to +/- 30% at 215 hPa. Consistent with this uncertainty analysis, comparisons with correlative data sets show that relative to HNO(3) measurements from ground- based, balloon- borne, and satellite instruments operating in both the infrared and microwave regions of the spectrum, MLS v2.2 HNO(3) mixing ratios are uniformly low by 10-30% throughout most of the stratosphere. Comparisons with in situ measurements made from the DC-8 and WB-57 aircraft in the upper troposphere and lowermost stratosphere indicate that the MLS HNO(3) values are low in this region as well, but are useful for scientific studies (with appropriate averaging).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy