SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Marcucci M F) srt2:(2005-2009)"

Sökning: WFRF:(Marcucci M F) > (2005-2009)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Amata, E., et al. (författare)
  • Experimental study of nonlinear interaction of plasma flow with charged thin current sheets : 1. Boundary structure and motion
  • 2006
  • Ingår i: Nonlinear processes in geophysics. - 1023-5809 .- 1607-7946. ; 13:4, s. 365-376
  • Tidskriftsartikel (refereegranskat)abstract
    • We study plasma transport at a thin magnetopause (MP), described hereafter as a thin current sheet (TCS), observed by Cluster at the southern cusp on 13 February 2001 around 20:01 UT. The Cluster observations generally agree with the predictions of the Gas Dynamic Convection Field (GDCF) model in the magnetosheath (MSH) up to the MSH boundary layer, where significant differences are seen. We find for the MP a normal roughly along the GSE x-axis, which implies a clear departure from the local average MP normal, a similar to 90 km thickness and an outward speed of 35 km/s. Two populations are identified in the MSH boundary layer: the first one roughly perpendicular to the MSH magnetic field, which we interpret as the "incident" MSH plasma, the second one mostly parallel to B. Just after the MP crossing a velocity jet is observed with a peak speed of 240 km/s, perpendicular to B, with M-A=3 and beta> 10 (peak value 23). The magnetic field clock angle rotates by 70 degrees across the MP. E-x is the main electric field component on both sides of the MP, displaying a bipolar signature, positive on the MSH side and negative on the opposite side, corresponding to a similar to 300 V electric potential jump across the TCS. The E x B velocity generally coincides with the perpendicular velocity measured by CIS; however, in the speed jet a difference between the two is observed, which suggests the need for an extra flow source. We propose that the MP TCS can act locally as an obstacle for low-energy ions (<350 eV), being transparent for ions with larger gyroradius. As a result, the penetration of plasma by finite gyroradius is considered as a possible source for the jet. The role of reconnection is briefly discussed. The electrodynamics of the TCS along with mass and momentum transfer across it are further discussed in the companion paper by Savin et al. (2006).
  •  
3.
  •  
4.
  • Marcucci, M. F., et al. (författare)
  • Extended SuperDARN and IMAGE observations for northward IMF : Evidence for dual lobe reconnection
  • 2008
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 113:A2, s. A02204-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of ionospheric convection in the Northern Hemisphere made by the SuperDARN radar network during a 3 h period on 3 December 2001. The interplanetary magnetic field (IMF) during the time of observations is predominately northward with the By component changing from positive to slightly negative. During this period Cluster is skimming the southern high latitude dusk magnetopause and reveals that reconnection is going on quasi-continuously with the reconnection site being most of the time tailward of the southern cusp and always near the satellite location (Retino, et al., 2005). Detailed analysis of the three dimensional distribution function indicates that Cluster samples magnetosheath lines connected with geomagnetic field lines tailward of the cusps in both hemispheres (Bavassano Cattaneo et al., 2006). The evolution of the ionospheric convection measured by SuperDARN, together with IMAGE FUV observations of aurorae and DMSP particle precipitation data, confirms Cluster observations and shows that simultaneous reconnection poleward of both the northern and southern cusps occurs at a variable rate on the dusk part of the magnetosphere when the IMF clock angle is small.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy