SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mardones Diego) srt2:(2022)"

Sökning: WFRF:(Mardones Diego) > (2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Law, Chi Yan, 1990, et al. (författare)
  • Isolated Massive Star Formation in G28.20-0.05
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 939:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report high-resolution 1.3 mm continuum and molecular line observations of the massive protostar G28.20-0.05 with Atacama Large Millimeter/submillimeter Array. The continuum image reveals a ring-like structure with 2000 au radius, similar to morphology seen in archival 1.3 cm Very Large Array observations. Based on its spectral index and associated H30α emission, this structure mainly traces ionized gas. However, there is evidence for ∼30 M ⊙ of dusty gas near the main millimeter continuum peak on one side of the ring, as well as in adjacent regions within 3000 au. A virial analysis on scales of ∼2000 au from hot core line emission yields a dynamical mass of ∼80 M ⊙. A strong velocity gradient in the H30α emission is evidence for a rotating, ionized disk wind, which drives a larger-scale molecular outflow. An infrared spectral energy distribution (SED) analysis indicates a current protostellar mass of m * ∼ 40 M ⊙ forming from a core with initial mass M c ∼ 300 M ⊙ in a clump with mass surface density of Σcl ∼ 0.8 g cm−2. Thus the SED and other properties of the system can be understood in the context of core accretion models. A structure-finding analysis on the larger-scale continuum image indicates G28.20-0.05 is forming in a relatively isolated environment, with no other concentrated sources, i.e., protostellar cores, above ∼1 M ⊙ found from ∼0.1 to 0.4 pc around the source. This implies that a massive star can form in relative isolation, and the dearth of other protostellar companions within the ∼1 pc environs is a strong constraint on massive star formation theories that predict the presence of a surrounding protocluster.
  •  
2.
  • Stanke, T., et al. (författare)
  • The APEX Large CO Heterodyne Orion Legacy Survey (ALCOHOLS): I. Survey overview
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Orion molecular cloud complex harbours the nearest Giant Molecular Clouds (GMCs) and the nearest site of high-mass star formation. Its young star and protostar populations are thoroughly characterized. The region is therefore a prime target for the study of star formation. Aims. Here, we verify the performance of the SuperCAM 64 pixel heterodyne array on the Atacama Pathfinder Experiment (APEX). We give a descriptive overview of a set of wide-field CO(32) spectral line cubes obtained towards the Orion GMC complex, aimed at characterizing the dynamics and structure of the extended molecular gas in diverse regions of the clouds, ranging from very active sites of clustered star formation in Orion B to comparatively quiet regions in southern Orion A. In a future publication, we will characterize the full population of protostellar outflows and their feedback over an entire GMC. Methods. We present a 2.7 square degree (130 pc2) mapping survey in the 12CO(32) transition, obtained using SuperCAM on APEX at an angular resolution of 19 (7600 AU or 0.037 pc at a distance of 400 pc), covering the main sites of star formation in the Orion B cloud (L 1622, NGC 2071, NGC 2068, Ori B9, NGC 2024, and NGC 2023), and a large patch in the southern part of the L 1641 cloud in Orion A. Results. We describe CO integrated line emission and line moment maps and position-velocity diagrams for all survey fields and discuss a few sub-regions in some detail. Evidence for expanding bubbles is seen with lines splitting into double components, often in areas of optical nebulosities, most prominently in the NGC 2024 H II region, where we argue that the bulk of the molecular gas is in the foreground of the H II region. High CO(32)/CO(10) line ratios reveal warm CO along the western edge of the Orion B cloud in the NGC 2023 & NGC 2024 region facing the IC 434 H II region. We see multiple, well separated radial velocity cloud components towards several fields and propose that L 1641-S consists of a sequence of clouds at increasingly larger distances. We find a small, seemingly spherical cloud, which we term Cow Nebula globule, north of NGC 2071. We confirm that we can trace high velocity line wings out to the extremely high velocity regime in protostellar molecular outflows for the NGC 2071-IR outflow and the NGC 2024 CO jet, and identify the protostellar dust core FIR4 (rather than FIR5) as the true driving source of the NGC 2024 monopolar outflow.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy