SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Maria Vicedo Cabrera Ana) srt2:(2018)"

Sökning: WFRF:(Maria Vicedo Cabrera Ana) > (2018)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Guo, Yuming, et al. (författare)
  • Quantifying excess deaths related to heatwaves under climate change scenarios : A multicountry time series modelling study
  • 2018
  • Ingår i: PLoS Medicine. - : Public Library of Science (PLoS). - 1549-1277 .- 1549-1676. ; 15:7
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Heatwaves are a critical public health problem. There will be an increase in the frequency and severity of heatwaves under changing climate. However, evidence about the impacts of climate change on heatwave-related mortality at a global scale is limited.METHODS AND FINDINGS: We collected historical daily time series of mean temperature and mortality for all causes or nonexternal causes, in periods ranging from January 1, 1984, to December 31, 2015, in 412 communities within 20 countries/regions. We estimated heatwave-mortality associations through a two-stage time series design. Current and future daily mean temperature series were projected under four scenarios of greenhouse gas emissions from 1971-2099, with five general circulation models. We projected excess mortality in relation to heatwaves in the future under each scenario of greenhouse gas emissions, with two assumptions for adaptation (no adaptation and hypothetical adaptation) and three scenarios of population change (high variant, median variant, and low variant). Results show that, if there is no adaptation, heatwave-related excess mortality is expected to increase the most in tropical and subtropical countries/regions (close to the equator), while European countries and the United States will have smaller percent increases in heatwave-related excess mortality. The higher the population variant and the greenhouse gas emissions, the higher the increase of heatwave-related excess mortality in the future. The changes in 2031-2080 compared with 1971-2020 range from approximately 2,000% in Colombia to 150% in Moldova under the highest emission scenario and high-variant population scenario, without any adaptation. If we considered hypothetical adaptation to future climate, under high-variant population scenario and all scenarios of greenhouse gas emissions, the heatwave-related excess mortality is expected to still increase across all the countries/regions except Moldova and Japan. However, the increase would be much smaller than the no adaptation scenario. The simple assumptions with respect to adaptation as follows: no adaptation and hypothetical adaptation results in some uncertainties of projections.CONCLUSIONS: This study provides a comprehensive characterisation of future heatwave-related excess mortality across various regions and under alternative scenarios of greenhouse gas emissions, different assumptions of adaptation, and different scenarios of population change. The projections can help decision makers in planning adaptation and mitigation strategies for climate change.
  •  
2.
  • Oudin Åström, Daniel, et al. (författare)
  • Investigating changes in mortality attributable to heat and cold in Stockholm, Sweden
  • 2018
  • Ingår i: International journal of biometeorology. - : Springer Nature. - 0020-7128 .- 1432-1254. ; 62:9, s. 1777-1780
  • Tidskriftsartikel (refereegranskat)abstract
    • Projections of temperature-related mortality rely upon exposure-response relationships using recent data. Analyzing long historical data and trends may extend knowledge of past and present impacts that may provide additional insight and improve future scenarios. We collected daily mean temperatures and daily all-cause mortality for the period 1901-2013 for Stockholm County, Sweden, and calculated the total attributable fraction of mortality due to non-optimal temperatures and quantified the contribution of cold and heat. Total mortality attributable to non-optimal temperatures varied between periods and cold consistently had a larger impact on mortality than heat. Cold-related attributable fraction (AF) remained stable over time whereas heat-related AF decreased. AF on cold days remained stable over time, which may indicate that mortality during colder months may not decline as temperatures increase in the future. More research is needed to enhance estimates of burdens related to cold and heat in the future.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy