SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Martin de la Fuente Laura) srt2:(2021)"

Sökning: WFRF:(Martin de la Fuente Laura) > (2021)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bååth, Maria, et al. (författare)
  • MET Expression and Cancer Stem Cell Networks Impact Outcome in High-Grade Serous Ovarian Cancer
  • 2021
  • Ingår i: Genes. - : MDPI AG. - 2073-4425. ; 12:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Overexpression of the receptor tyrosine kinase MET has been linked to poor survival in several cancer types, and MET has been suggested to interact with stem cell networks. In vitro studies have further suggested a possible benefit of a combined treatment using PARP and MET inhibitors. We used a tissue microarray (TMA) with 130 samples of advanced-stage high-grade serous fallopian tube/ovarian cancer (HGSC) to investigate the prognostic value of MET protein expression alone and in combination with the stem cell factor SOX2. The possible synergistic effects of a PARP and MET inhibitor treatment were evaluated in two cell lines with BRCA1 or BRCA2 deficiency and in their BRCA1/2-proficient counterparts. Patients with tumors positive for MET had worse overall survival (log-rank test, p = 0.015) compared to patients with MET-negative tumors. The prognostic role of MET was even more prominent in the subgroup of patients with SOX2-negative tumors (p = 0.0081). No synergistic effects of the combined treatment with PARP and MET inhibitors were found in the cell lines examined. We conclude that MET expression could be used as a marker for OS in HGSC and that stemness should be taken into consideration when evaluating the mechanisms of this effect.
  •  
2.
  • Martin de la Fuente, Laura, et al. (författare)
  • Detection of Copy Number Aberration and Tumor Fraction in Archival Cervical Specimens from Ovarian Cancer Patients using Shallow Whole Genome Sequencing.
  • 2021
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Ovarian cancer, often called the silent killer due to its diffuse symptoms at early stage, poor prognosis after treatments and high mortality, is also a heterogeneous disease consisting of different histological subtypes with potentially different origins. About 90% of all cases derive from epithelial cells and high-grade serous ovarian carcinoma (HGSOC) is the most common and aggressive form of epithelial ovarian cancer. Recent data indicate the p53 signature lesions and serous tubal intraepithelial carcinomas (STICs) in the fallopian tube are likely to be the common origin of HGSOC, and neoplastic cells containing TP53 somatic mutations could be detected in the cervical specimens collected from 20 months to 6 years before the diagnosis. Our ongoing project is to validate pre-diagnostic cervical specimens from HGSOC by using shallow whole genome sequencing (sWGS), which can detect copy number aberrations (CNAs) even in preserved tumor DNA samples with advantages of low cost, high multiplex and easy data handling. The sWGS will be performed on Illumina sequencing platforms and the sequencing data will be processed with BWA (alignment), SAMtools (cleanup), Picardtools (duplicate) and gatk (BQSR). QDNAseq will be used for the downstream copy number analysis, and GISTIC2.0 for identifying focal gain and loss region. It will be a challenge to estimate the tumor purity and ploidy on the scarce amount of ovarian tumorigenic precursors in the cervical specimens, and we will need to use a probabilistic graphical model without a priori information from normal fallopian tissue to estimate tumor fraction, corrected CNAs as well as tumorigenic copy number signatures. We hope the sWGS approach will allow us to study and detect the early onset of ovarian cancers on large population based cervical screening in a non-invasive and cost-efficient manner.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy