SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Martinez Lage Pablo) srt2:(2015-2019)"

Sökning: WFRF:(Martinez Lage Pablo) > (2015-2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bocchetta, Martina, et al. (författare)
  • The use of biomarkers for the etiologic diagnosis of MCI in Europe: An EADC survey.
  • 2015
  • Ingår i: Alzheimer's & Dementia. - : Wiley. - 1552-5279 .- 1552-5260. ; 11:2, s. 195-206
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the use of Alzheimer's disease (AD) biomarkers in European Alzheimer's Disease Consortium centers and assessed their perceived usefulness for the etiologic diagnosis of mild cognitive impairment (MCI). We surveyed availability, frequency of use, and confidence in diagnostic usefulness of markers of brain amyloidosis (amyloid positron emission tomography [PET], cerebrospinal fluid [CSF] Aβ42) and neurodegeneration (medial temporal atrophy [MTA] on MR, fluorodeoxyglucose positron emission tomography [FDG-PET], CSF tau). The most frequently used biomarker is visually rated MTA (75% of the 37 responders reported using it "always/frequently") followed by CSF markers (22%), FDG-PET (16%), and amyloid-PET (3%). Only 45% of responders perceive MTA as contributing to diagnostic confidence, where the contribution was rated as "moderate". Seventy-nine percent of responders felt "very/extremely" comfortable delivering a diagnosis of MCI due to AD when both amyloid and neuronal injury biomarkers were abnormal (P < .02 versus any individual biomarker). Responders largely agreed that a combination of amyloidosis and neuronal injury biomarkers was a strongly indicative AD signature.
  •  
2.
  •  
3.
  • Kim, Min, et al. (författare)
  • Primary fatty amides in plasma associated with brain amyloid burden, hippocampal volume, and memory in the European Medical Information Framework for Alzheimer's Disease biomarker discovery cohort
  • 2019
  • Ingår i: Alzheimer's & Dementia. - : Elsevier. - 1552-5260 .- 1552-5279. ; 15:6, s. 817-827
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: A critical and as-yet unmet need in Alzheimer's disease (AD) is the discovery of peripheral small molecule biomarkers. Given that brain pathology precedes clinical symptom onset, we set out to test whether metabolites in blood associated with pathology as indexed by cerebrospinal fluid (CSF) AD biomarkers.METHODS: This study analyzed 593 plasma samples selected from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery study, of individuals who were cognitively healthy (n = 242), had mild cognitive impairment (n = 236), or had AD-type dementia (n = 115). Logistic regressions were carried out between plasma metabolites (n = 883) and CSF markers, magnetic resonance imaging, cognition, and clinical diagnosis.RESULTS: Eight metabolites were associated with amyloid β and one with t-tau in CSF, these were primary fatty acid amides (PFAMs), lipokines, and amino acids. From these, PFAMs, glutamate, and aspartate also associated with hippocampal volume and memory.DISCUSSION: PFAMs have been found increased and associated with amyloid β burden in CSF and clinical measures.
  •  
4.
  • Lleó, Alberto, et al. (författare)
  • Longitudinal cerebrospinal fluid biomarker trajectories along the Alzheimer's disease continuum in the BIOMARKAPD study
  • 2019
  • Ingår i: Alzheimer's & Dementia. - : Elsevier. - 1552-5260 .- 1552-5279. ; 15:6, s. 742-753
  • Tidskriftsartikel (refereegranskat)abstract
    • INTRODUCTION: Within-person trajectories of cerebrospinal fluid (CSF) biomarkers in Alzheimer's disease (AD) are not well defined.METHODS: We included 467 subjects from the BIOMARKAPD study with at least two serial CSF samples. Diagnoses were subjective cognitive decline (n = 75), mild cognitive impairment (n = 128), and AD dementia (n = 110), and a group of cognitively unimpaired subjects (n = 154) were also included. We measured baseline and follow-up CSF levels of total tau (t-tau), phosphorylated tau (p-tau), YKL-40, and neurofilament light (NfL). Median CSF sampling interval was 2.1 years.RESULTS: CSF levels of t-tau, p-tau, NfL, and YKL-40 were 2% higher per each year of baseline age in controls (P <.001). In AD, t-tau levels were 1% lower (P <.001) and p-tau levels did not change per each year of baseline age. Longitudinally, only NfL (P <.001) and YKL-40 (P <.02) increased during the study period.DISCUSSION: All four CSF biomarkers increase with age, but this effect deviates in AD for t-tau and p-tau.
  •  
5.
  • Shi, Liu, et al. (författare)
  • Discovery and validation of plasma proteomic biomarkers relating to brain amyloid burden by SOMAscan assay.
  • 2019
  • Ingår i: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279 .- 1552-5260. ; 15:11, s. 1478-1488
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma proteins have been widely studied as candidate biomarkers to predict brain amyloid deposition to increase recruitment efficiency in secondary prevention clinical trials for Alzheimer's disease. Most such biomarker studies are targeted to specific proteins or are biased toward high abundant proteins.4001 plasma proteins were measured in two groups of participants (discovery group=516, replication group=365) selected from the European Medical Information Framework for Alzheimer's disease Multimodal Biomarker Discovery study, all of whom had measures of amyloid.A panel of proteins (n=44), along with age and apolipoprotein E (APOE) ε4, predicted brain amyloid deposition with good performance in both the discovery group (area under the curve=0.78) and the replication group (area under the curve=0.68). Furthermore, a causal relationship between amyloid and tau was confirmed by Mendelian randomization.The results suggest that high-dimensional plasma protein testing could be a useful and reproducible approach for measuring brain amyloid deposition.
  •  
6.
  • Stamate, Daniel, et al. (författare)
  • A metabolite-based machine learning approach to diagnose Alzheimer-type dementia in blood : Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort
  • 2019
  • Ingår i: Alzheimer’s & Dementia. - : John Wiley & Sons. - 2352-8737. ; 5:C, s. 933-938
  • Tidskriftsartikel (refereegranskat)abstract
    • IntroductionMachine learning (ML) may harbor the potential to capture the metabolic complexity in Alzheimer Disease (AD). Here we set out to test the performance of metabolites in blood to categorize AD when compared to CSF biomarkers.MethodsThis study analyzed samples from 242 cognitively normal (CN) people and 115 with AD‐type dementia utilizing plasma metabolites (n = 883). Deep Learning (DL), Extreme Gradient Boosting (XGBoost) and Random Forest (RF) were used to differentiate AD from CN. These models were internally validated using Nested Cross Validation (NCV).ResultsOn the test data, DL produced the AUC of 0.85 (0.80–0.89), XGBoost produced 0.88 (0.86–0.89) and RF produced 0.85 (0.83–0.87). By comparison, CSF measures of amyloid, p‐tau and t‐tau (together with age and gender) produced with XGBoost the AUC values of 0.78, 0.83 and 0.87, respectively.DiscussionThis study showed that plasma metabolites have the potential to match the AUC of well‐established AD CSF biomarkers in a relatively small cohort. Further studies in independent cohorts are needed to validate whether this specific panel of blood metabolites can separate AD from controls, and how specific it is for AD as compared with other neurodegenerative disorders.
  •  
7.
  • Toledo, Jon B, et al. (författare)
  • Alzheimer's disease cerebrospinal fluid biomarker in cognitively normal subjects.
  • 2015
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156 .- 0006-8950. ; 138:Pt 9, s. 2701-15
  • Tidskriftsartikel (refereegranskat)abstract
    • In a large multicentre sample of cognitively normal subjects, as a function of age, gender and APOE genotype, we studied the frequency of abnormal cerebrospinal fluid levels of Alzheimer's disease biomarkers including: total tau, phosphorylated tau and amyloid-β1-42. Fifteen cohorts from 12 different centres with either enzyme-linked immunosorbent assays or Luminex® measurements were selected for this study. Each centre sent nine new cerebrospinal fluid aliquots that were used to measure total tau, phosphorylated tau and amyloid-β1-42 in the Gothenburg laboratory. Seven centres showed a high correlation with the new Gothenburg measurements; therefore, 10 cohorts from these centres are included in the analyses here (1233 healthy control subjects, 40-84 years old). Amyloid-β amyloid status (negative or positive) and neurodegeneration status (negative or positive) was established based on the pathological cerebrospinal fluid Alzheimer's disease cut-off values for cerebrospinal fluid amyloid-β1-42 and total tau, respectively. While gender did not affect these biomarker values, APOE genotype modified the age-associated changes in cerebrospinal fluid biomarkers such that APOE ε4 carriers showed stronger age-related changes in cerebrospinal fluid phosphorylated tau, total tau and amyloid-β1-42 values and APOE ε2 carriers showed the opposite effect. At 40 years of age, 76% of the subjects were classified as amyloid negative, neurodegeneration negative and their frequency decreased to 32% at 85 years. The amyloid-positive neurodegeneration-negative group remained stable. The amyloid-negative neurodegeneration-positive group frequency increased slowly from 1% at 44 years to 16% at 85 years, but its frequency was not affected by APOE genotype. The amyloid-positive neurodegeneration-positive frequency increased from 1% at 53 years to 28% at 85 years. Abnormally low cerebrospinal fluid amyloid-β1-42 levels were already frequent in midlife and APOE genotype strongly affects the levels of cerebrospinal fluid amyloid-β1-42, phosphorylated tau and total tau across the lifespan without influencing the frequency of subjects with suspected non-amyloid pathology.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy