SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Martinsson S) srt2:(2015-2019)"

Sökning: WFRF:(Martinsson S) > (2015-2019)

  • Resultat 1-10 av 55
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Reinbold, C. S., et al. (författare)
  • Analysis of the Influence of microRNAs in Lithium Response in Bipolar Disorder
  • 2018
  • Ingår i: Frontiers in Psychiatry. - : Frontiers Media SA. - 1664-0640. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) is a common, highly heritable neuropsychiatric disease characterized by recurrent episodes of mania and depression. Lithium is the best-established long-term treatment for BD, even though individual response is highly variable Evidence suggests that some of this variability has a genetic basis. This is supported by the largest genome-wide association study (GWAS) of lithium response to date conducted by the International Consortium on Lithium Genetics (ConLiGen) Recently, we performed the first genome-wide analysis of the involvement of miRNAs in BD and identified nine BD associated miRNAs However, it is unknown whether these miRNAs are also associated with lithium response in BD. In the present study, we therefore tested whether common variants at these nine candidate miRNAs contribute to the variance in lithium response in BD. Furthermore, we systematically analyzed whether any other miRNA in the genome is implicated in the response to lithium. For this purpose, we performed gene-based tests for all known miRNA coding genes in the ConLiGen GWAS dataset (n = 2,563 patients) using a set-based testing approach adapted from the versatile gene based test for GWAS (VEGAS2). In the candidate approach, miR-499a showed a nominally significant association with lithium response, providing some evidence for involvement in both development and treatment of BD. In the genome-wide miRNA analysis, 71 miRNAs showed nominally significant associations with the dichotomous phenotype and 106 with the continuous trait for treatment response. A total of 15 miRNAs revealed nominal significance in both phenotypes with miR-633 showing the strongest association with the continuous trait (p = 9.80E-04) and miR-607 with the dichotomous phenotype (p = 5.79E-04). No association between miRNAs and treatment response to lithium in BD in either of the tested conditions withstood multiple testing correction. Given the limited power of our study, the investigation of miRNAs in larger GWAS samples of BD and lithium response is warranted.
  •  
4.
  •  
5.
  • Hou, Liping, et al. (författare)
  • Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder.
  • 2016
  • Ingår i: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 25:15, s. 3383-94
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder (BD) is a genetically complex mental illness characterized by severe oscillations of mood and behavior. Genome-wide association studies (GWAS) have identified several risk loci that together account for a small portion of the heritability. To identify additional risk loci, we performed a two-stage meta-analysis of >9 million genetic variants in 9,784 bipolar disorder patients and 30,471 controls, the largest GWAS of BD to date. In this study, to increase power we used ∼2,000 lithium-treated cases with a long-term diagnosis of BD from the Consortium on Lithium Genetics, excess controls, and analytic methods optimized for markers on the X-chromosome. In addition to four known loci, results revealed genome-wide significant associations at two novel loci: an intergenic region on 9p21.3 (rs12553324, p=5.87×10(-9); odds ratio=1.12) and markers within ERBB2 (rs2517959, p=4.53×10(-9); odds ratio=1.13). No significant X-chromosome associations were detected and X-linked markers explained very little BD heritability. The results add to a growing list of common autosomal variants involved in BD and illustrate the power of comparing well-characterized cases to an excess of controls in GWAS.
  •  
6.
  • Li, S. J., et al. (författare)
  • The 1p36 Tumor Suppressor KIF 1B beta Is Required for Calcineurin Activation, Controlling Mitochondrial Fission and Apoptosis
  • 2016
  • Ingår i: Developmental Cell. - : Elsevier BV. - 1534-5807 .- 1878-1551. ; 36:2, s. 164-178
  • Tidskriftsartikel (refereegranskat)abstract
    • KIF1B beta is a candidate 1p36 tumor suppressor that regulates apoptosis in the developing sympathetic nervous system. We found that KIF1B beta activates the Ca2+-dependent phosphatase calcineurin (CN) by stabilizing the CN-calmodulin complex, relieving enzymatic autoinhibition and enabling CN substrate recognition. CN is the key mediator of cellular responses to Ca2+ signals and its deregulation is implicated in cancer, cardiac, neurodegenerative, and immune disease. We show that KIF1B beta affects mitochondria! dynamics through CN-dependent dephosphorylation of Dynamin-related protein 1 (DRP1), causing mitochondria! fission and apoptosis. Furthermore, KIF1B beta actuates recognition of all known CN substrates, implying a general mechanism for KIF1B beta in Ca2+ signaling and how Ca2+-dependent signaling is executed by CN. Pathogenic KIF1B beta mutations previously identified in neuroblastomas and pheochromocytomas all fail to activate CN or stimulate DRP1 dephosphorylation. Importantly, KIF1B beta and DRP1 are silenced in 1p36 hemizygous-deleted neuroblastomas, indicating that deregulation of calcineurin and mitochondria! dynamics contributes to high-risk and poor-prognosis neuroblastoma.
  •  
7.
  •  
8.
  • Amare, Azmeraw T, et al. (författare)
  • Association of Polygenic Score for Schizophrenia and HLA Antigen and Inflammation Genes With Response to Lithium in Bipolar Affective Disorder: A Genome-Wide Association Study.
  • 2018
  • Ingår i: JAMA psychiatry. - : American Medical Association (AMA). - 2168-6238 .- 2168-622X. ; 75:1, s. 65-74
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium is a first-line mood stabilizer for the treatment of bipolar affective disorder (BPAD). However, the efficacy of lithium varies widely, with a nonresponse rate of up to 30%. Biological response markers are lacking. Genetic factors are thought to mediate treatment response to lithium, and there is a previously reported genetic overlap between BPAD and schizophrenia (SCZ).To test whether a polygenic score for SCZ is associated with treatment response to lithium in BPAD and to explore the potential molecular underpinnings of this association.A total of 2586 patients with BPAD who had undergone lithium treatment were genotyped and assessed for long-term response to treatment between 2008 and 2013. Weighted SCZ polygenic scores were computed at different P value thresholds using summary statistics from an international multicenter genome-wide association study (GWAS) of 36989 individuals with SCZ and genotype data from patients with BPAD from the Consortium on Lithium Genetics. For functional exploration, a cross-trait meta-GWAS and pathway analysis was performed, combining GWAS summary statistics on SCZ and response to treatment with lithium. Data analysis was performed from September 2016 to February 2017.Treatment response to lithium was defined on both the categorical and continuous scales using the Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder score. The effect measures include odds ratios and the proportion of variance explained.Of the 2586 patients in the study (mean [SD] age, 47.2 [13.9] years), 1478 were women and 1108 were men. The polygenic score for SCZ was inversely associated with lithium treatment response in the categorical outcome, at a threshold P<5×10-2. Patients with BPAD who had a low polygenic load for SCZ responded better to lithium, with odds ratios for lithium response ranging from 3.46 (95% CI, 1.42-8.41) at the first decile to 2.03 (95% CI, 0.86-4.81) at the ninth decile, compared with the patients in the 10th decile of SCZ risk. In the cross-trait meta-GWAS, 15 genetic loci that may have overlapping effects on lithium treatment response and susceptibility to SCZ were identified. Functional pathway and network analysis of these loci point to the HLA antigen complex and inflammatory cytokines.This study provides evidence for a negative association between high genetic loading for SCZ and poor response to lithium in patients with BPAD. These results suggest the potential for translational research aimed at personalized prescribing of lithium.
  •  
9.
  • Braekeveldt, N., et al. (författare)
  • Patient-Derived Xenograft Models Reveal Intratumor Heterogeneity and Temporal Stability in Neuroblastoma
  • 2018
  • Ingår i: Cancer Research. - 0008-5472. ; 78:20, s. 5958-5969
  • Tidskriftsartikel (refereegranskat)abstract
    • Patient-derived xenografts (PDX) and the Avatar, a single PDX mirroring an individual patient, are emerging tools in preclinical cancer research. However, the consequences of intratumor heterogeneity for PDX modeling of biomarkers, target identification, and treatment decisions remain under-explored. In this study, we undertook serial passaging and comprehensive molecular analysis of neuroblastoma orthotopic PDXs, which revealed strong intrinsic genetic, transcriptional, and phenotypic stability for more than 2 years. The PDXs showed preserved neuroblastoma-associated gene signatures that correlated with poor clinical outcome in a large cohort of patients with neuroblastoma. Furthermore, we captured spatial intratumor heterogeneity using ten PDXs from a single high-risk patient tumor. We observed diverse growth rates, transcriptional, proteomic, and phosphoproteomic profiles. PDX-derived transcriptional profiles were associated with diverse clinical characteristics in patients with high-risk neuroblastoma. These data suggest that high-risk neuroblastoma contains elements of both temporal stability and spatial intratumor heterogeneity, the latter of which complicates clinical translation of personalized PDX-Avatar studies into preclinical cancer research. Significance: These findings underpin the complexity of PDX modeling as a means to advance translational applications against neuroblastoma. (C) 2018 AACR.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 55
Typ av publikation
tidskriftsartikel (42)
konferensbidrag (13)
Typ av innehåll
refereegranskat (39)
övrigt vetenskapligt/konstnärligt (13)
populärvet., debatt m.m. (3)
Författare/redaktör
Kogner, P (11)
Martinsson, T (9)
Halldin, C (9)
Martinsson, Tommy, 1 ... (8)
Landén, Mikael, 1966 (7)
Fransson, S (7)
visa fler...
Farde, L (6)
Johnsen, JI (5)
Finnema, SJ (5)
Wang, YP (4)
Alda, Martin (4)
Fullerton, Janice M (4)
Mitchell, Philip B (4)
Vieta, Eduard (4)
Sjoberg, RM (4)
Lavebratt, C (4)
Hoffmann, P (4)
Mattheisen, M (4)
Cichon, S (4)
Rietschel, M (4)
Lavebratt, Catharina (4)
Backlund, L (4)
Degenhardt, F (4)
Bauer, M (4)
Monteleone, Palmiero (4)
Bang-Andersen, B (4)
Rouleau, Guy A. (4)
Schalling, M (4)
Martinsson, L. (4)
Schalling, Martin (4)
Heilbronner, Urs (4)
Degenhardt, Franzisk ... (4)
Hou, Liping (4)
Shekhtman, Tatyana (4)
Adli, Mazda (4)
Akula, Nirmala (4)
Ardau, Raffaella (4)
Arias, Bárbara (4)
Aubry, Jean-Michel (4)
Backlund, Lena (4)
Bhattacharjee, Abesh ... (4)
Bellivier, Frank (4)
Bengesser, Susanne (4)
Birner, Armin (4)
Cervantes, Pablo (4)
Chillotti, Caterina (4)
Cichon, Sven (4)
Cruceanu, Cristiana (4)
Etain, Bruno (4)
Jamain, Stéphane (4)
visa färre...
Lärosäte
Karolinska Institutet (32)
Göteborgs universitet (23)
Lunds universitet (8)
Umeå universitet (3)
Uppsala universitet (3)
Chalmers tekniska högskola (2)
visa fler...
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Linköpings universitet (1)
Högskolan i Borås (1)
RISE (1)
visa färre...
Språk
Engelska (51)
Svenska (3)
Odefinierat språk (1)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (22)
Naturvetenskap (9)
Samhällsvetenskap (4)
Teknik (3)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy