SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mase K.) srt2:(2020-2023)"

Sökning: WFRF:(Mase K.) > (2020-2023)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aartsen, M. G., et al. (författare)
  • Development of an analysis to probe the neutrino mass ordering with atmospheric neutrinos using three years of IceCube DeepCore data IceCube Collaboration
  • 2020
  • Ingår i: European Physical Journal C. - : SPRINGER. - 1434-6044 .- 1434-6052. ; 80:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Neutrino Mass Ordering (NMO) remains one of the outstanding questions in the field of neutrino physics. One strategy to measure the NMO is to observe matter effects in the oscillation pattern of atmospheric neutrinos above similar to 1GeV, as proposed for several next-generation neutrino experiments. Moreover, the existing IceCube DeepCore detector can already explore this type of measurement. We present the development and application of two independent analyses to search for the signature of the NMO with three years of DeepCore data. These analyses include a full treatment of systematic uncertainties and a statistically-rigorous method to determine the significance for the NMO from a fit to the data. Both analyses show that the dataset is fully compatible with both mass orderings. For the more sensitive analysis, we observe a preference for normal ordering with a p-value of pIO=15.3% and CLs=53.3% for the inverted ordering hypothesis, while the experimental results from both analyses are consistent within their uncertainties. Since the result is independent of the value of delta CP and obtained from energies E nu greater than or similar to 5GeV, it is complementary to recent results from long-baseline experiments. These analyses set the groundwork for the future of this measurement with more capable detectors, such as the IceCube Upgrade and the proposed PINGU detector.
  •  
2.
  • Aartsen, M. G., et al. (författare)
  • Neutrinos below 100 TeV from the southern sky employing refined veto techniques to IceCube data
  • 2020
  • Ingår i: Astroparticle physics. - : ELSEVIER. - 0927-6505 .- 1873-2852. ; 116
  • Tidskriftsartikel (refereegranskat)abstract
    • Many Galactic sources of gamma rays, such as supernova remnants, are expected to produce neutrinos with a typical energy cutoff well below 100 TeV. For the IceCube Neutrino Observatory located at the South Pole, the southern sky, containing the inner part of the Galactic plane and the Galactic Center, is a particularly challenging region at these energies, because of the large background of atmospheric muons. In this paper, we present recent advancements in data selection strategies for track-like muon neutrino events with energies below 100 TeV from the southern sky. The strategies utilize the outer detector regions as veto and features of the signal pattern to reduce the background of atmospheric muons to a level which, for the first time, allows IceCube searching for point-like sources of neutrinos in the southern sky at energies between 100 GeV and several TeV in the muon neutrino charged current channel. No significant clustering of neutrinos above background expectation was observed in four years of data recorded with the completed IceCube detector. Upper limits on the neutrino flux for a number of spectral hypotheses are reported for a list of astrophysical objects in the southern hemisphere. 
  •  
3.
  • Aguilar, J. A., et al. (författare)
  • Triboelectric backgrounds to radio-based polar ultra-high energy neutrino (UHEN) experiments
  • 2023
  • Ingår i: Astroparticle physics. - : Elsevier. - 0927-6505 .- 1873-2852. ; 145
  • Tidskriftsartikel (refereegranskat)abstract
    • In the hopes of observing the highest-energy neutrinos (E> 1 EeV) populating the Universe, both past (RICE, AURA, ANITA) and current (RNO-G, ARIANNA, ARA and TAROGE-M) polar-sited experiments exploit the impulsive radio emission produced by neutrino interactions. In such experiments, rare single event candidates must be unambiguously identified above backgrounds. Background rejection strategies to date primarily target thermal noise fluctuations and also impulsive radio-frequency signals of anthropogenic origin. In this paper, we consider the possibility that 'fake' neutrino signals may also be generated naturally via the `triboelectric effect' This broadly describes any process in which force applied at a boundary layer results in displacement of surface charge, leading to the production of an electrostatic potential difference AV. Wind blowing over granular surfaces such as snow can induce such a potential difference, with subsequent coronal discharge. Discharges over timescales as short as nanoseconds can then lead to radio-frequency emissions at characteristic MHz-GHz frequencies. Using data from various past (RICE, AURA, SATRA, ANITA) and current (RNO G, ARIANNA and ARA) neutrino experiments, we find evidence for such backgrounds, which are generally characterized by: (a) a threshold wind velocity which likely depends on the experimental trigger criteria and layout; for the experiments considered herein, this value is typically O(10 m/s), (b) frequency spectra generally shifted to the low-end of the frequency regime to which current radio experiments are typically sensitive (100-200 MHz), (c) for the strongest background signals, an apparent preference for discharges from above-surface structures, although the presence of more isotropic, lower amplitude triboelectric discharges cannot be excluded.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy