SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matsson Lars) srt2:(1995-1999)"

Sökning: WFRF:(Matsson Lars) > (1995-1999)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Matsson, Mikael, et al. (författare)
  • Carboxin resistance in Paracoccus denitrificans conferred by a mutation in the membrane-anchor domain of succinate:quinone oxidoreductase (Complex II)
  • 1998
  • Ingår i: Archives of Microbiology. - : Springer Science and Business Media LLC. - 0302-8933 .- 1432-072X. ; 170:1, s. 27-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Succinate:quinone reductase is a membrane-bound enzyme of the citric acid cycle and the respiratory chain. Carboxin is a potent inhibitor of the enzyme of certain organisms. The bacterium Paracoccus denitrificans was found to be sensitive to carboxin in vivo, and mutants that grow in the presence of 3'-methyl carboxin were isolated. Membranes of the mutants showed resistant succinate:quinone reductase activity. The mutation conferring carboxin resistance was identified in four mutants. They contained the same missense mutation in the sdhD gene, which encodes one of two membrane-intrinsic polypeptides of the succinate:quinone reductase complex. The mutation causes an Asp to Gly replacement at position 89 in the SdhD polypeptide. P. denitrificans strains that overproduced wild-type or mutant enzymes were constructed. Enzymic properties of the purified enzymes were analyzed. The apparent K-m for quinone (DPB) and the sensitivity to thenoyltrifluoroacetone was normal for the carboxin-resistant enzyme, but the succinate:quinone reductase activity was lower than for the wild-type enzyme. Mutations conferring carboxin resistance indicate the region on the enzyme where the inhibitor binds. A previously reported His to Leu replacement close to the [3Fe-4S] cluster in the iron-sulfur protein of Ustilago maydis succinate:quinone reductase confers resistance to carboxin and thenoyltrifluoroacetone. The Asp to Gly replacement in the P. denitrificans SdhD polypeptide, identified in this study to confer resistance to carboxin but not to thenoyltrifluoroacetone, is in a predicted cytoplasmic loop connecting two transmembrane segments. It is likely that this loop is located in the neighborhood of the [3Fe-4S] cluster.
  •  
2.
  • Waldeck, A. Reginald, et al. (författare)
  • Electron paramagnetic resonance studies of succinate:ubiquinone oxidoreductase from Paracoccus denitrificans : Evidence for a magnetic interaction between the 3Fe-4S cluster and cytochrome b
  • 1997
  • Ingår i: Journal of Biological Chemistry. - : Elsevier BV. - 1083-351X .- 0021-9258.
  • Tidskriftsartikel (refereegranskat)abstract
    • Electron paramagnetic resonance (EPR) studies of succinate:ubiquinone oxidoreductase (SQR) from Paracoccus denitrificans have been undertaken in the purified and membrane-bound states, Spectroscopic ''signatures'' accounting for the three iron-sulfur clusters (2Fe-2S, 3Fe-4S, and 4Fe-4S), cytochrome b, flavin, and protein-bound ubisemiquinone radicals have been obtained in air-oxidized, succinate-reduced, and dithionite-reduced preparations at 4-10 K. Spectra obtained at 170 K in the presence of excess succinate showed a signal typical of that of a flavin radical, but superimposed with another signal. The superimposed signal originated from two bound ubisemiquinones, as shown by spectral simulations, Power saturation measurements performed on the air-oxidized enzyme provided evidence for a weak magnetic dipolar interaction operating between the oxidized 3Fe-4S cluster and the oxidized cytochrome b. Power saturation experiments performed on the succinate- and dithionite-reduced forms of the enzyme demonstrated that the 4Fe-4S cluster is coupled weakly to both the 2Fe-2S and the 3Fe-4S clusters, Quantitative interpretation of these power saturation experiments has been achieved through redox calculations. They revealed that a spin-spin interaction between the reduced 3Fe-4S cluster and the cytochrome b (oxidized) may also exist. These findings form the first direct EPR evidence for a close proximity (less than or equal to 2 nm) of the high potential 3Fe-4S cluster, situated in the succinate dehydrogenase part of the enzyme, and the low potential, low spin b-heme in the membrane anchor of the enzyme.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy