SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matsuda Ryo) "

Sökning: WFRF:(Matsuda Ryo)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Attié, David, et al. (författare)
  • A time projection chamber with GEM-based readout
  • 2017
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002. ; 856, s. 109-118
  • Tidskriftsartikel (refereegranskat)abstract
    • For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1. T solenoidal field and read out with three independent Gas Electron Multiplier (GEM) based readout modules, are reported. The TPC was exposed to a 6. GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.
  •  
2.
  •  
3.
  • Hosono, Chie, et al. (författare)
  • Transient junction anisotropies orient annular cell polarization in the Drosophila airway tubes
  • 2015
  • Ingår i: Nature Cell Biology. - : Springer Science and Business Media LLC. - 1465-7392 .- 1476-4679. ; 17:12, s. 1569-1576
  • Tidskriftsartikel (refereegranskat)abstract
    • In contrast to planes, three-dimensional (3D) structures such as tubes are physically anisotropic. Tubular organs exhibit a striking orientation of landmarks according to the physical anisotropy of the 3D shape(1-4), in addition to planar cell polarization(5,6). However, the influence of 3D tissue topography on the constituting cells remains underexplored(7-9). Here, we identify a regulatory network polarizing cellular biochemistry according to the physical anisotropy of the 3D tube geometry (tube cell polarization) by a genome-wide, tissue-specific RNAi screen. During Drosophila airway remodelling, each apical cellular junction is equipotent to establish perpendicular actomyosin cables, irrespective of the longitudinal or transverse tube axis. A dynamic transverse enrichment of atypical protein kinase C (aPKC) shifts the balance and transiently targets activated small GTPase RhoA, myosin phosphorylation and Rab11 vesicle trafficking to longitudinal junctions. We propose that the PAR complex translates tube physical anisotropy into longitudinal junctional anisotropy, where cell cell communication aligns the contractile cytoskeleton of neighbouring cells.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Matsuda, Ryo, et al. (författare)
  • Multipotent versus differentiated cell fate selection in the developing Drosophila airways
  • 2015
  • Ingår i: eLIFE. - 2050-084X. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Developmental potentials of cells are tightly controlled at multiple levels. The embryonic Drosophila airway tree is roughly subdivided into two types of cells with distinct developmental potentials: a proximally located group of multipotent adult precursor cells (P-fate) and a distally located population of more differentiated cells (D-fate). We show that the GATA-family transcription factor (TF) Grain promotes the P-fate and the POU-homeobox TF Ventral veinless (Vvl/Drifter/U-turned) stimulates the D-fate. Hedgehog and receptor tyrosine kinase (RTK) signaling cooperate with Vvl to drive the D-fate at the expense of the P-fate while negative regulators of either of these signaling pathways ensure P-fate specification. Local concentrations of Decapentaplegic/BMP, Wingless/Wnt, and Hedgehog signals differentially regulate the expression of D-factors and P-factors to transform an equipotent primordial field into a concentric pattern of radially different morphogenetic potentials, which gradually gives rise to the distal-proximal organization of distinct cell types in the mature airway.
  •  
8.
  • Matsuda, Ryo, 1972- (författare)
  • Revisiting cell specification and differentiation in the Drosophila airways, an insect organ homologous to our lung and blood vessels
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Oxygen is essential for life. Aquatic ancestral animal species are thought to have independently terrestrialized and invented distinct strategies for efficient oxygen supply. The respiratory system of vertebrates like us is composed of lungs connected to the vasculature while insects have a single system delivering air directly to internal tissues. In spite of their different evolutionary histories, the formation of these different tubular networks is thought to share many cellular, genetic and molecular principles. Here, in register with preceding studies, I briefly introduce the projects of my co-authors and me, addressing several new aspects of specification and differentiation of the Drosophila airways.The airway primordia are specified at the lateral ectoderm of each side of the embryo as 10 groups of epithelial cells. These cells coordinately invaginate from the 2-dimensional (2D) ectodermal sheet to form 3D primitive tubes. The most proximal cells to the epidermis take the pluripotent cell fate and later generate most of the pupal and adult airways. Distal cells ramify to establish the primary branches and some neighboring branches fuse, interconnecting the network. Establishing these basic architectures, the tubular network matures into functional airways, attaining proper tube sizes in diameter and length, producing an annular-ridged lining of exoskeleton to avoid tube collapse and finally filling the system with gas.First, I present airway-promoting functions of factors that were previously assigned to repress the airway fate. Then, I present genetic frameworks discriminating between 3 ground cell fates and the more derived cell fates: A) the proximal pluripotent cells vs. the distal more differentiated cells, B) the visceral branch vs. the signal-induced primary branches and C) the 1st metamere vs. the more posterior metameres. Lastly, I present our efforts to identify genes converting the airway tubes into a functional respiratory system.
  •  
9.
  • Matsuda, Ryo, et al. (författare)
  • The Intersection of the Extrinsic Hedgehog and WNT/Wingless Signals with the Intrinsic Hox Code Underpins Branching Pattern and Tube Shape Diversity in the Drosophila Airways
  • 2015
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The tubular networks of the Drosophila respiratory system and our vasculature show distinct branching patterns and tube shapes in different body regions. These local variations are crucial for organ function and organismal fitness. Organotypic patterns and tube geometries in branched networks are typically controlled by variations of extrinsic signaling but the impact of intrinsic factors on branch patterns and shapes is not well explored. Here, we show that the intersection of extrinsic hedgehog(hh) and WNT/wingless (wg) signaling with the tube-intrinsic Hox code of distinct segments specifies the tube pattern and shape of the Drosophila airways. In the cephalic part of the airways, hh signaling induces expression of the transcription factor (TF) knirps (kni) in the anterior dorsal trunk (DTa1). kni represses the expression of another TF spalt major (salm), making DTa1 a narrow and long tube. In DTa branches of more posterior metameres, Bithorax Complex (BX-C) Hox genes autonomously divert hh signaling from inducing kni, thereby allowing DTa branches to develop as salm-dependent thick and short tubes. Moreover, the differential expression of BX-C genes is partly responsible for the anterior-to-posterior gradual increase of the DT tube diameter through regulating the expression level of Salm, a transcriptional target of WNT/wg signaling. Thus, our results highlight how tube intrinsic differential competence can diversify tube morphology without changing availabilities of extrinsic factors.
  •  
10.
  • Okada, Yukinori, et al. (författare)
  • Genetics of rheumatoid arthritis contributes to biology and drug discovery
  • 2014
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 506:7488, s. 376-381
  • Tidskriftsartikel (refereegranskat)abstract
    • A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)(1). Here we performed a genome-wide association study meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating similar to 10 million single-nucleotide polymorphisms. We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101 (refs 2-4). We devised an in silico pipeline using established bioinformatics methods based on functional annotation(5), cis-acting expression quantitative trait loci(6) and pathway analyses(7-9)-as well as novel methods based on genetic overlap with human primary immunodeficiency, haematological cancer somatic mutations and knockout mouse phenotypes-to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy