SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Matveev V. A.) srt2:(2015-2019)"

Sökning: WFRF:(Matveev V. A.) > (2015-2019)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aad, G, et al. (författare)
  • 2015
  • swepub:Mat__t
  •  
2.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
3.
  • Overview of the JET results
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Bouyoucef, S E, et al. (författare)
  • Poster Session 2 : Monday 4 May 2015, 08
  • 2015
  • Ingår i: European Heart Journal Cardiovascular Imaging. - : Oxford University Press (OUP). - 2047-2404 .- 2047-2412. ; 16 Suppl 1
  • Tidskriftsartikel (refereegranskat)
  •  
5.
  • Abe, K., et al. (författare)
  • J-PARC Neutrino Beamline Upgrade Technical Design Report
  • 2019
  • Rapport (refereegranskat)abstract
    • In this document, technical details of the upgrade plan of the J-PARC neutrino beamline for the extension of the T2K experiment are described. T2K has proposed to accumulate data corresponding to 2×1022 protons-on-target in the next decade, aiming at an initial observation of CP violation with 3σ or higher significance in the case of maximal CP violation. Methods to increase the neutrino beam intensity, which are necessary to achieve the proposed data increase, are described.
  •  
6.
  • Matveev, V. V., et al. (författare)
  • Investigation of Melts of Polybutylcarbosilane Dendrimers by 1H NMR Spectroscopy
  • 2017
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Melts of polybutylcarbosilane (PBC) dendrimers from third (G3) up to sixth (G6) generations are investigated by 1H NMR spectroscopy in a wide temperature range up to 493 K. At room temperature, NMR spectra of G3-G5 dendrimers exhibit resolved, solution-like spectra ("liquid" phase). In contrast, the spectrum of the G6 dendrimer is characterized by a single unresolved broad line at whole temperature range, which supports the presence of an anomalous phase state of G6 at temperatures higher than glass transition temperature. For the first time, an unexpected transition of G5 dendrimer from a molecular liquid state to an anomalous state/phase upon temperature increase has been detected using NMR data. Specifically, an additional wide background line appears in the G5 spectrum above 473 K, and this line corresponds to a G5 state characterized by restricted molecular mobility, i.e., a state similar to the "anomalous" phase of G6 melt. The fraction of the G5 dendrimers in "anomalous" phase at 493 K is approximately 40%. Analysis of the spectral shapes suggests that changes in the G5 dendrimers are reversible with temperature.
  •  
7.
  • Alekseev, V. A., et al. (författare)
  • Laminar burning velocities of n-decane and binary kerosene surrogate mixture
  • 2017
  • Ingår i: Fuel. - : Elsevier BV. - 0016-2361. ; 187, s. 429-434
  • Tidskriftsartikel (refereegranskat)abstract
    • Laminar burning velocities of n-decane and binary kerosene surrogate mixture consisting of n-decane (80%) and benzene (20%) by liquid volume were determined at atmospheric pressure and initial gas temperatures of 338 and 358 K. The heat flux method was employed to measure the burning velocity in non-stretched flames and three kinetic mechanisms were used to simulate the results: JetSurF 2.0, and two models for kerosene developed at Politecnico di Milano: Skeletal Surrogate (121 species) and high-temperature detailed (ver. 1412). New measurements were compared with available literature results at 400 K by extrapolation, which was performed using calculated temperature dependence of the laminar burning velocity. The data determined with the heat flux method agree with some previous counterflow burner measurements and disagree with the data from spherical flames. The detailed mechanism from PoliMi was able to reproduce the present experiments the best. The increase of the burning velocity in the surrogate mixture compared to n-decane was found to be insignificant.
  •  
8.
  • Soloviova-Sokolova, J. V., et al. (författare)
  • Laminar burning velocities of benzene + air flames at room and elevated temperatures
  • 2016
  • Ingår i: Fuel. - : Elsevier BV. - 0016-2361. ; 175, s. 302-309
  • Tidskriftsartikel (refereegranskat)abstract
    • Laminar burning velocities, SL, of benzene + air flames were determined at atmospheric pressure and initial gas temperatures, T, of 298, 318, 338 and 358 K. Non-stretched flames were stabilized on a perforated plate burner using the heat flux method. New measurements were compared with available literature results obtained in spherical and counterflow flames at room and elevated temperatures. Data consistency was assessed with the help of analysis of the temperature dependence of the laminar burning velocity, which was interpreted using an empirical expression SL = SL0(T/T0)α. Both the laminar burning velocities and the power exponents, α, were compared with predictions of three kinetic mechanisms: JetSurF 2.0, and two models for kerosene developed at Politecnico di Milano: Skeletal Surrogate (121 species) and high-temperature detailed (ver. 1412). The last model demonstrated the best performance over the range of conditions studied.
  •  
9.
  • Semenikhin, A. S., et al. (författare)
  • Mechanism and Rate Constants of the CH3+ CH2CO Reaction : A Theoretical Study
  • 2018
  • Ingår i: International Journal of Chemical Kinetics. - : Wiley. - 0538-8066. ; 50:4, s. 273-284
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanism of the reaction of ketene with methyl radical has been studied by ab initio CCSD(T)-F12/cc-pVQZ-f12//B2PLYPD3/6-311G** calculations of the potential energy surface. Temperature- and pressure-dependent reaction rate constants have been computed using the Rice-Ramsperger-Kassel-Marcus (RRKM)-Master Equation and transition state theory methods. Three main channels have been shown to dominate the reaction; the formation of the collisionally stabilized CH3COCH2 radical and the production of the C2H5 + CO and HCCO + CH4 bimolecular products. Relative contributions of the CH3COCH2, C2H5 + CO, and HCCO + CH4 channels strongly depend on the reaction conditions; the formation of thermalized CH3COCH2 is favored at low temperatures and high pressures, HCCO + CH4 is dominant at high temperatures, whereas the yield of C2H5 + CO peaks at intermediate temperatures around 1000 K. The C2H5 + CO channel is favored by a decrease in pressure but remains the second most important reaction pathway after HCCO + CH4 under typical flame conditions. The calculated rate constants at different pressures are proposed for kinetic modeling of ketene reactions in combustion in the form of modified Arrhenius expressions. Only rate constant to form CH3COCH2 depends on pressure, whereas those to produce C2H5 + CO and HCCO + CH4 appeared to be pressure independent.
  •  
10.
  • Alekseev, Vladimir A., et al. (författare)
  • Laminar burning velocities of methylcyclohexane + air flames at room and elevated temperatures : A comparative study
  • 2018
  • Ingår i: Combustion and Flame. - : Elsevier BV. - 0010-2180. ; 196, s. 99-107
  • Tidskriftsartikel (refereegranskat)abstract
    • Laminar burning velocities of methylcyclohexane + air flames were determined using the heat flux method at atmospheric pressure and initial temperatures of 298–400 K. The measurements were performed on two experimental setups at Lund University and Samara National Research University. Our results obtained at the same initial temperatures are in good agreement. Consistency of the measurements performed at different temperatures was tested employing analysis of the temperature dependence of the burning velocities. This analysis revealed increased scatter in the burning velocity data at some equivalence ratios which may be attributed to the differences in the design of the burners used. New measurements were also compared to available literature data. Reasonably good agreement with the data of Kumar and Sung (2010) was observed at 400 K, with significantly higher burning velocities at the maximum at 353 K as compared to other studies from the literature. Predictions of two detailed reaction mechanisms developed for jet fuels – PoliMi and JetSurF 2.0 were compared with the present generally consistent measurements. The two kinetic models disagreed with each other, with the experimental data being located in between the model predictions. Sensitivity analysis revealed that behavior of the models is largely defined by C0–C2 chemistry. Comparison of the model predictions with the burning velocities of ethylene and methane showed the same trends in over- and under-predictions as for methylcyclohexane + air flames.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy