SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McCully Curtis) srt2:(2023)"

Sökning: WFRF:(McCully Curtis) > (2023)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Camacho-Neves, Yssavo, et al. (författare)
  • Over 500 Days in the Life of the Photosphere of the Type Iax Supernova SN 2014dt
  • 2023
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 951:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Type Iax supernovae (SNe Iax) are the largest known class of peculiar white dwarf SNe, distinct from normal Type Ia supernovae (SNe Ia). The unique properties of SNe Iax, especially their strong photospheric lines out to extremely late times, allow us to model their optical spectra and derive the physical parameters of the long-lasting photosphere. We present an extensive spectral timeseries, including 21 new spectra, of SN Iax 2014dt from +11 to +562 days after maximum light. We are able to reproduce the entire timeseries with a self-consistent, nearly unaltered deflagration explosion model from Fink et al. using TARDIS, an open source radiative-transfer code. We find that the photospheric velocity of SN 2014dt slows its evolution between +64 and +148 days, which closely overlaps the phase when we see SN 2014dt diverge from the normal spectral evolution of SNe Ia (+90 to +150 days). The photospheric velocity at these epochs, ∼400–1000 km s−1, may demarcate a boundary within the ejecta below which the physics of SNe Iax and normal SNe Ia differ. Our results suggest that SN 2014dt is consistent with a weak deflagration explosion model that leaves behind a bound remnant and drives an optically thick, quasi-steady-state wind creating the photospheric lines at late times. The data also suggest that this wind may weaken at epochs past +450 days, perhaps indicating a radioactive power source that has decayed away.
  •  
2.
  • Hosseinzadeh, Griffin, et al. (författare)
  • The Early Light Curve of SN 2023bee : Constraining Type Ia Supernova Progenitors the Apian Way
  • 2023
  • Ingår i: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 953:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present very early photometric and spectroscopic observations of the Type Ia supernova (SN Ia) 2023bee, starting about 8 hr after the explosion, which reveal a strong excess in the optical and nearest UV (U and UVW1) bands during the first several days of explosion. This data set allows us to probe the nature of the binary companion of the exploding white dwarf and the conditions leading to its ignition. We find a good match to the Kasen model in which a main-sequence companion star stings the ejecta with a shock as they buzz past. Models of double detonations, shells of radioactive nickel near the surface, interaction with circumstellar material, and pulsational delayed detonations do not provide good matches to our light curves. We also observe signatures of unburned material, in the form of carbon absorption, in our earliest spectra. Our radio nondetections place a limit on the mass-loss rate from the putative companion that rules out a red giant but allows a main-sequence star. We discuss our results in the context of other similar SNe Ia in the literature.
  •  
3.
  • Kelly, Patrick L., et al. (författare)
  • Constraints on the Hubble constant from supernova Refsdal's reappearance
  • 2023
  • Ingår i: Science. - 0036-8075 .- 1095-9203. ; 380:6649
  • Tidskriftsartikel (refereegranskat)abstract
    • The gravitationally lensed supernova Refsdal appeared in multiple images produced through gravitational lensing by a massive foreground galaxy cluster. After the supernova appeared in 2014, lens models of the galaxy cluster predicted that an additional image of the supernova would appear in 2015, which was subsequently observed. We use the time delays between the images to perform a blinded measurement of the expansion rate of the Universe, quantified by the Hubble constant (H0). Using eight cluster lens models, we infer kilometers per second per megaparsec. Using the two models most consistent with the observations, we find kilometers per second per megaparsec. The observations are best reproduced by models that assign dark-matter halos to individual galaxies and the overall cluster.
  •  
4.
  • Ni, Yuan Qi, et al. (författare)
  • The Origin and Evolution of the Normal Type Ia SN 2018aoz with Infant-phase Reddening and Excess Emission
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 946:1
  • Tidskriftsartikel (refereegranskat)abstract
    • SN 2018aoz is a Type Ia SN with a B-band plateau and excess emission in infant-phase light curves ≲1 day after the first light, evidencing an over-density of surface iron-peak elements as shown in our previous study. Here, we advance the constraints on the nature and origin of SN 2018aoz based on its evolution until the nebular phase. Near-peak spectroscopic features show that the SN is intermediate between two subtypes of normal Type Ia: core normal and broad line. The excess emission may be attributable to the radioactive decay of surface iron-peak elements as well as the interaction of ejecta with either the binary companion or a small torus of circumstellar material. Nebular-phase limits on Hα and He i favor a white dwarf companion, consistent with the small companion size constrained by the low early SN luminosity, while the absence of [O I] and He i disfavors a violent merger of the progenitor. Of the two main explosion mechanisms proposed to explain the distribution of surface iron-peak elements in SN 2018aoz, the asymmetric Chandrasekhar-mass explosion is less consistent with the progenitor constraints and the observed blueshifts of nebular-phase [Fe II] and [Ni II]. The helium-shell double-detonation explosion is compatible with the observed lack of C spectral features, but current 1D models are incompatible with the infant-phase excess emission, Bmax–Vmax color, and weak strength of nebular-phase [Ca II]. Although the explosion processes of SN 2018aoz still need to be more precisely understood, the same processes could produce a significant fraction of Type Ia SNe that appear to be normal after ∼1 day.
  •  
5.
  • Wang, Qinan, et al. (författare)
  • Revealing the Progenitor of SN 2021zby through Analysis of the TESS Shock-cooling Light Curve
  • 2023
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 943:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present early observations and analysis of the double-peaked Type IIb supernova (SN IIb) SN 2021zby. TESS captured the prominent early shock-cooling peak of SN 2021zby within the first ∼10 days after explosion with a 30 minute cadence. We present optical and near-infrared spectral series of SN 2021zby, including three spectra during the shock-cooling phase. Using a multiband model fit, we find that the inferred properties of its progenitor are consistent with a red supergiant or yellow supergiant, with an envelope mass of ∼0.30–0.65 M⊙ and an envelope radius of ∼120–300 R⊙. These inferred progenitor properties are similar to those of other SNe IIb with a double-peaked feature, such as SNe 1993J, 2011dh, 2016gkg, and 2017jgh. This study further validates the importance of the high cadence and early coverage in resolving the shape of the shock-cooling light curve, while the multiband observations, particularly UV, are also necessary to fully constrain the progenitor properties.
  •  
6.
  • Yang (杨轶), Yi, et al. (författare)
  • The interaction of supernova 2018evt with a substantial amount of circumstellar matter – An SN 1997cy-like event
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 519:2, s. 1618-1647
  • Tidskriftsartikel (refereegranskat)abstract
    • A rare class of supernovae (SNe) is characterized by strong interaction between the ejecta and several solar masses of circumstellar matter (CSM) as evidenced by strong Balmer-line emission. Within the first few weeks after the explosion, they may display spectral features similar to overluminous Type Ia SNe, while at later phase their observation properties exhibit remarkable similarities with some extreme case of Type IIn SNe that show strong Balmer lines years after the explosion. We present polarimetric observations of SN 2018evt obtained by the ESO Very Large Telescope from 172 to 219 d after the estimated time of peak luminosity to study the geometry of the CSM. The non-zero continuum polarization decreases over time, suggesting that the mass-loss of the progenitor star is aspherical. The prominent H α emission can be decomposed into a broad, time-evolving component and an intermediate-width, static component. The former shows polarized signals, and it is likely to arise from a cold dense shell (CDS) within the region between the forward and reverse shocks. The latter is significantly unpolarized, and it is likely to arise from shocked, fragmented gas clouds in the H-rich CSM. We infer that SN 2018evt exploded inside a massive and aspherical circumstellar cloud. The symmetry axes of the CSM and the SN appear to be similar. SN 2018evt shows observational properties common to events that display strong interaction between the ejecta and CSM, implying that they share similar circumstellar configurations. Our preliminary estimate also suggests that the circumstellar environment of SN 2018evt has been significantly enriched at a rate of ∼0.1 M⊙ yr−1 over a period of >100 yr. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy