SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McLeod R) srt2:(2020-2023)"

Sökning: WFRF:(McLeod R) > (2020-2023)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
2.
  • Knudstrup, E., et al. (författare)
  • Radial velocity confirmation of a hot super-Neptune discovered by TESS with a warm Saturn-mass companion
  • 2023
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 519:4, s. 5637-5655
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and confirmation of the planetary system TOI-1288. This late G dwarf harbours two planets: TOI-1288 b and TOI-1288 c. We combine TESS space-borne and ground-based transit photometry with HARPS-N and HIRES high-precision Doppler measurements, which we use to constrain the masses of both planets in the system and the radius of planet b. TOI-1288 b has a period of 2.699835(-0.000003)(+0.000004) d, a radius of 5.24 +/- 0.09 R-circle plus, and a mass of 42 +/- 3 M-circle plus, making this planet a hot transiting super-Neptune situated right in the Neptunian desert. This desert refers to a paucity of Neptune-sized planets on short period orbits. Our 2.4-yr-long Doppler monitoring of TOI-1288 revealed the presence of a Saturn-mass planet on a moderately eccentric orbit (0.13(-0.09)(+0.07)) with a minimum mass of 84 +/- 7 M-circle plus and a period of 443(-13)(+11) d. The five sectors worth of TESS data do not cover our expected mid-transit time for TOI-1288 c, and we do not detect a transit for this planet in these sectors.
  •  
3.
  • Naidu, R., et al. (författare)
  • Per- and poly-fluoroalkyl substances (PFAS) : Current status and research needs
  • 2020
  • Ingår i: Environmental Technology & Innovation. - : Elsevier BV. - 2352-1864. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • An expert workshop focusing on per- and poly-fluoroalkyl substances (PFAS) was held in Adelaide, South Australia, Australia in September 2019 following the 8th International Contaminated Site Remediation Conference — CleanUp 2019. The workshop was organised by the Cooperative Research Centre for Contamination and Remediation of the Environment (CRC CARE) and was chaired by Professor Ravi Naidu, CEO and Managing Director of CRC CARE and Director of the Global Centre for Environmental Remediation at the University of Newcastle, NSW. The purpose of the workshop, which was attended by more than 50 experts in the field of contaminated land assessment and management, was to discuss the current state of play and research needs relating to PFAS contaminated sites. This paper provides a summary of the discussions and conclusions and lists actions and needs that the expert group identified as critical for pursuing successful PFAS management and remedy approaches.This paper is intended to capture the shared information, comments, and current thinking related to PFAS challenges and research needs as identified by the group of expert participants; the write up is not intended to be a complete dissertation on the science and work that has been carried out. With a fast-evolving subject and increased government and public attention on PFAS presence in the environment, the group was convened with the objective of providing value in contributing to solutions to the PFAS challenges that are faced both in Australia and internationally. The text contained herein provides references to observations and methods that the experts drew on in their discussions and in support of their commentary; documentation of the original references was not provided, and the reader should consult the scientific literature if further information and confirmation of observations is required. Following a brief on the background to PFAS challenges, the paper focusses on research gaps identified by experts with focus on Australian soils and groundwater including climatic patterns, an overview of PFAS research in Australia with emphasis on:RegulatoryAnalytical considerationsEcological and Human Health RisksFate and TransportRemediation and Risk Management. 
  •  
4.
  •  
5.
  • Devoy, Anny, et al. (författare)
  • Generation and analysis of innovative genomically humanized knockin SOD1, TARDBP (TDP-43), and FUS mouse models
  • 2021
  • Ingår i: iScience. - : Elsevier. - 2589-0042. ; 24:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) is a fatal neurodegenerative disorder, and continued innovation is needed for improved understanding and for developing therapeutics. We have created next-generation genomically humanized knockin mouse models, by replacing the mouse genomic region of Sod1, Tardbp (TDP-43), and Fus, with their human orthologs, preserving human protein biochemistry and splicing with exons and introns intact. We establish a new standard of large knockin allele quality control, demonstrating the utility of indirect capture for enrichment of a genomic region of interest followed by Oxford Nanopore sequencing. Extensive analysis shows that homozygous humanized animals only express human protein at endogenous levels. Characterization of humanized FUS animals showed that they are phenotypically normal throughout their lifespan. These humanized strains are vital for preclinical assessment of interventions and serve as templates for the addition of coding or non-coding human ALS/FTD mutations to dissect disease pathomechanisms, in a physiological context.
  •  
6.
  • McLeod, Anna F., et al. (författare)
  • The impact of pre-supernova feedback and its dependence on environment
  • 2021
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 508:4, s. 5425-5448
  • Tidskriftsartikel (refereegranskat)abstract
    • Integral field units enable resolved studies of a large number of star-forming regions across entire nearby galaxies, providing insight on the conversion of gas into stars and the feedback from the emerging stellar populations over unprecedented dynamic ranges in terms of spatial scale, star-forming region properties, and environments. We use the Very Large Telescope (VLT) MUSE (Multi Unit Spectroscopic Explorer) legacy data set covering the central 35 arcmin(2) (similar to 12 kpc(2)) of the nearby galaxy NGC 300 to quantify the effect of stellar feedback as a function of the local galactic environment. We extract spectra from emission line regions identified within dendrograms, combine emission line ratios and line widths to distinguish between regions, planetary nebulae, and supernova remnants, and compute their ionized gas properties, gas-phase oxygen abundances, and feedback-related pressure terms. For the regions, we find that the direct radiation pressure (P-dir) and the pressure of the ionized gas (P-HII) weakly increase towards larger galactocentric radii, i.e. along the galaxy's (negative) abundance and (positive) extinction gradients. While the increase of P-HII with galactocentric radius is likely due to higher photon fluxes from lower-metallicity stellar populations, we find that the increase of P-dir is likely driven by the combination of higher photon fluxes and enhanced dust content at larger galactocentric radii. In light of the above, we investigate the effect of increased pre-supernova feedback at larger galactocentric distances (lower metallicities and increased dust mass surface density) on the ISM, finding that supernovae at lower metallicities expand into lower-density environments, thereby enhancing the impact of supernova feedback.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy