SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Medronho Bruno) srt2:(2015-2019)"

Sökning: WFRF:(Medronho Bruno) > (2015-2019)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alves, Luis, et al. (författare)
  • Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents
  • 2016
  • Ingår i: Cellulose. - : Springer Science and Business Media LLC. - 0969-0239 .- 1572-882X. ; 23:1, s. 247-258
  • Tidskriftsartikel (refereegranskat)abstract
    • The understanding of the state of dissolution of cellulose in a certain solvent is a critical step forward in the development of new efficient solvent systems for cellulose. Nevertheless, obtaining such information is not trivial. Recently, polarization transfer solid-state NMR (PTssNMR) was shown to be a very promising technique regarding an efficient and robust characterization of the solution state of cellulose. In the present study, combining PTssNMR, microscopic techniques and X-ray diffraction, a set of alkaline aqueous systems are investigated. The addition of specific additives, such as urea or thiourea, to aqueous NaOH based systems as well as the use of an amphiphilic organic cation, is found to have pronounced effects on the dissolution efficiency of cellulose. Additionally, the characteristics of the regenerated material are strongly dependent on the dissolution system; typically less crystalline materials, presenting smoother morphologies, are obtained when amphiphilic solvents or additives are used.
  •  
2.
  • Alves, Luis, et al. (författare)
  • Dissolution state of cellulose in aqueous systems. 2. Acidic solvents
  • 2016
  • Ingår i: Carbohydrate Polymers. - : Elsevier BV. - 0144-8617 .- 1879-1344. ; 151, s. 707-715
  • Tidskriftsartikel (refereegranskat)abstract
    • Cellulose is insoluble in water but can be dissolved in strong acidic or alkaline conditions. How well dissolved cellulose is in solution and how it organizes are key questions often neglected in literature. The typical low pH required for dissolving cellulose in acidic solvents limits the use of typical characterization techniques. In this respect, Polarization Transfer Solid State NMR (PT ssNMR) emerges as a reliable alternative. In this work, combining PT ssNMR, microscopic techniques and X-ray diffraction, a set of different acidic systems (phosphoric acid/water, sulfuric acid/glycerol and zinc chloride/water) is investigated. The studied solvent systems are capable to efficiently dissolve cellulose, although degradation occurs to some extent. PT ssNMR is capable to identify the liquid and solid fractions of cellulose, the degradation products and it is also sensitive to gelation. The materials regenerated from the acidic dopes were found to be highly sensitive to the solvent system and to the presence of amphiphilic additives in solution.
  •  
3.
  • Alves, Luis, et al. (författare)
  • New Insights on the Role of Urea on the Dissolution and Thermally-Induced Gelation of Cellulose in Aqueous Alkali
  • 2018
  • Ingår i: GELS. - : MDPI AG. - 2310-2861. ; 4:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The gelation of cellulose in alkali solutions is quite relevant, but still a poorly understood process. Moreover, the role of certain additives, such as urea, is not consensual among the community. Therefore, in this work, an unusual set of characterization methods for cellulose solutions, such as cryo-transmission electronic microscopy (cryo-TEM), polarization transfer solid-state nuclear magnetic resonance (PTssNMR) and diffusion wave spectroscopy (DWS) were employed to study the role of urea on the dissolution and gelation processes of cellulose in aqueous alkali. Cryo-TEM reveals that the addition of urea generally reduces the presence of undissolved cellulose fibrils in solution. These results are consistent with PTssNMR data, which show the reduction and in some cases the absence of crystalline portions of cellulose in solution, suggesting a pronounced positive effect of the urea on the dissolution efficiency of cellulose. Both conventional mechanical macrorheology and microrheology (DWS) indicate a significant delay of gelation induced by urea, being absent until ca. 60 degrees C for a system containing 5wt % cellulose, while a system without urea gels at a lower temperature. For higher cellulose concentrations, the samples containing urea form gels even at room temperature. It is argued that since urea facilitates cellulose dissolution, the high entanglement of the cellulose chains in solution (above the critical concentration, C*) results in a strong three-dimensional network.
  •  
4.
  • Alves, Luis, et al. (författare)
  • On the role of hydrophobic interactions in cellulose dissolution and regeneration: Colloidal aggregates and molecular solutions
  • 2015
  • Ingår i: Colloids and Surfaces A: Physicochemical and Engineering Aspects. - : Elsevier BV. - 0927-7757. ; 483, s. 257-263
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of strategies for dissolution and regeneration of cellulose constitutes an increasingly active research field due to the direct relevance for many production processes and applications. A wide variety of suitable solvents for cellulose are already available. However, cellulose solvents are of highly different nature reflecting the great challenges in the understanding of the subtle balance between the different interactions. Here, we report on the effect of two different solvents on the dissolution of cellulose on multiple length scales and its consequences for the characteristics of the regenerated material. While an aqueous tetrabutylammonium hydroxide solution gives rise to what appears to be dissolution down to the molecular level, a sodium hydroxide solution does not dissolve cellulose molecularly but rather leaves aggregates of high crystallinity stable in the cellulose dope. The dramatic difference between a small inorganic cation and an amphiphilic cation indicates a critical role of hydrophobic interactions between cellulose molecules and provides support for the picture that cellulose molecules have pronounced amphiphilic properties. (C) 2015 Elsevier B.V. All rights reserved.
  •  
5.
  • Costa, Carolina, et al. (författare)
  • Emulsion Formation and Stabilization by Biomolecules : The Leading Role of Cellulose.
  • 2019
  • Ingår i: Polymers. - : MDPI AG. - 2073-4360. ; 11:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Emulsion stabilization by native cellulose has been mainly hampered because of its insolubility in water. Chemical modification is normally needed to obtain water-soluble cellulose derivatives. These modified celluloses have been widely used for a range of applications by the food, cosmetic, pharmaceutic, paint and construction industries. In most cases, the modified celluloses are used as rheology modifiers (thickeners) or as emulsifying agents. In the last decade, the structural features of cellulose have been revisited, with particular focus on its structural anisotropy (amphiphilicity) and the molecular interactions leading to its resistance to dissolution. The amphiphilic behavior of native cellulose is evidenced by its capacity to adsorb at the interface between oil and aqueous solvent solutions, thus being capable of stabilizing emulsions. In this overview, the fundamentals of emulsion formation and stabilization by biomolecules are briefly revisited before different aspects around the emerging role of cellulose as emulsion stabilizer are addressed in detail. Particular focus is given to systems stabilized by native cellulose, either molecularly-dissolved or not (Pickering-like effect).
  •  
6.
  •  
7.
  • Falco, Cigdem Yucel, et al. (författare)
  • Chitosan-Dextran Sulfate Hydrogels as a Potential Carrier for Probiotics
  • 2017
  • Ingår i: Carbohydrate Polymers. - : Elsevier. - 0144-8617 .- 1879-1344. ; 172, s. 175-183
  • Tidskriftsartikel (refereegranskat)abstract
    • Physical and chemical (crosslinked with genipin) hydrogels based on chitosan and dextran sulfate were developed and characterized as novel bio-materials suitable for probiotic encapsulation. The swelling of the hydrogels was dependent on the composition and weakly influenced by the pH of the media. The morphology analysis supports the swelling data showing distinct changes in microstructure depending on the composition. The viability and culturability tests showed approx. 3.6 log CFU/mL decrease of cells (L. acidophilus as model) incorporated into chemical hydrogels when compared to the number of viable native cells. However, the live/dead viability assay evidenced that a considerable amount of viable cells were still entrapped in the hydrogel network and therefore the viability is most likely underestimated. Overall, the developed systems are robust and their structure, rheology and swelling properties can be tuned by changing the blend ratio, thus constituting appealing bio-matrices for cell encapsulation.
  •  
8.
  • Gubitosi, Marta, et al. (författare)
  • On cellulose dissolution and aggregation in aqueous tetrabutylammonium hydroxide
  • 2016
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 17:9, s. 2873-2881
  • Tidskriftsartikel (refereegranskat)abstract
    • Aqueous tetrabutylammonium hydroxide, TBAH(aq), has been found to dissolve cellulose and to be a potential solvent for chemical processing or fiber spinning. In this paper, we have investigated the dissolution state of cellulose in 40 wt % TBAH(aq) solvent, and present an extensive study of rheology, combined with static light and small-angle X-ray scattering, to correlate cellulose aggregation with changes in the rheological parameters. Two cellulose molecular weights are compared. Microcrystalline cellulose (MCC), with a degree of polymerization of ca. 260, and a dissolving pulp with an approximately ten times higher molecular weight. Scattering data demonstrate that cellulose is molecularly dissolved at lower cellulose concentrations, while aggregates are present when the concentration exceeds a certain value. The onset of the aggregate formation is marked by a pronounced increase in the scattering intensity at low q, shear thinning behavior and violation of the empirical Cox-Merz rule. Additionally, the SAXS data suggest the presence of a solvation shell enriched in TBA+ ions, compared to the bulk solvent. The results are consistent with the recent suggestion that while native cellulose I may still dissolve, solutions are, above a particular concentration, becoming supersaturated with respect to the more stable crystal form cellulose II.
  •  
9.
  • Lindman, Björn, et al. (författare)
  • Clouding of nonionic surfactants
  • 2016
  • Ingår i: Current Opinion in Colloid & Interface Science. - : Elsevier BV. - 1359-0294 .- 1879-0399. ; 22, s. 23-29
  • Forskningsöversikt (refereegranskat)abstract
    • Nonionic surfactants have broad applications such as cleaning and dispersion stabilization, which frequently are hampered by strong temperature sensitivities. As manifested by clouding and decreased solubility with increasing temperature, the interaction between water and the oligo(oxyethylene) head-groups is becoming less favorable. Different aspects of surfactant self-assembly, like the critical micelle concentration, micelle size and shape, intermicellar interactions and phase separation phenomena are reviewed as well as suggested underlying causes of the temperature dependence. Furthermore, the effect of cosolutes on clouding and the behavior of related systems, non-aqueous solutions and nonionic polymers, are examined. (C) 2016 Elsevier Ltd. All rights reserved.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy