SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Meinsma Rutger) "

Sökning: WFRF:(Meinsma Rutger)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dobritzsch, Doreen, 1972-, et al. (författare)
  • beta-Ureidopropionase deficiency due to novel and rare UPB1 mutations affecting pre-mRNA splicing and protein structural integrity and catalytic activity
  • 2022
  • Ingår i: Molecular Genetics and Metabolism. - : Elsevier. - 1096-7192 .- 1096-7206. ; 136:3, s. 177-185
  • Tidskriftsartikel (refereegranskat)abstract
    • beta-Ureidopropionase is the third enzyme of the pyrimidine degradation pathway and catalyses the conversion of N-carbamyl-beta-alanine and N-carbamyl-beta-aminoisobutyric acid to beta-alanine and beta-aminoisobutyric acid, ammonia and CO2. To date, only a limited number of genetically confirmed patients with a complete beta-ureidopropionase deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 10 newly identified beta-ureidopropionase deficient individuals. Patients presented mainly with neurological abnormalities and markedly elevated levels of N-carbamyl-beta-alanine and N-carbamyl-beta-aminoisobutyric acid in urine. Analysis of UPB1, encoding beta-ureidopropionase, showed 5 novel missense variants and two novel splice-site variants. Functional expression of the UPB1 variants in mammalian cells showed that recombinant beta-ureidopropionase carrying the p.Ala120Ser, p.Thr129Met, p.Ser300Leu and p.Asn345Ile variant yielded no or significantly decreased beta-ureidopropionase activity. Analysis of the crystal structure of human beta-ureidopropionase indicated that the point mutations affect substrate binding or prevent the proper subunit association to larger oligomers and thus a fully functional beta-ureidopropionase. A minigene approach showed that the intronic variants c.[364 + 6 T > G] and c.[916 + 1_916 + 2dup] led to skipping of exon 3 and 8, respectively, in the process of UPB1 pre-mRNA splicing. The c.[899C > T] (p.Ser300Leu) variant was identified in two unrelated Swedish beta-ureidopropionase patients, indicating that beta-ureidopropionase deficiency may be more common than anticipated.
  •  
2.
  • Kuilenburg, André B P van, et al. (författare)
  • Phenotypic and clinical implications of variants in the dihydropyrimidine dehydrogenase gene.
  • 2016
  • Ingår i: Biochimica et Biophysica Acta. - : Elsevier BV. - 0006-3002 .- 1878-2434. ; 1862:4, s. 754-762
  • Tidskriftsartikel (refereegranskat)abstract
    • Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of the pyrimidine bases uracil, thymine and the antineoplastic agent 5-fluorouracil. Genetic variations in the gene encoding DPD (DPYD) have emerged as predictive risk alleles for 5FU-associated toxicity. Here we report an in-depth analysis of genetic variants in DPYD and their consequences for DPD activity and pyrimidine metabolites in 100 Dutch healthy volunteers. 34 SNPs were detected in DPYD and 15 SNPs were associated with altered plasma concentrations of pyrimidine metabolites. DPD activity was significantly associated with the plasma concentrations of uracil, the presence of a specific DPYD mutation (c.1905+1G>A) and the combined presence of three risk variants in DPYD (c.1905+1G>A, c.1129-5923C>G, c.2846A>T), but not with an altered uracil/dihydrouracil (U/UH2) ratio. Various haplotypes were associated with different DPD activities (haplotype D3, a decreased DPD activity; haplotype F2, an increased DPD activity). Functional analysis of eight recombinant mutant DPD enzymes showed a reduced DPD activity, ranging from 35% to 84% of the wild-type enzyme. Analysis of a DPD homology model indicated that the structural effect of the novel p.G401R mutation is most likely minor. The clinical relevance of the p.D949V mutation was demonstrated in a cancer patient heterozygous for the c.2846A>T mutation and a novel nonsense mutation c.1681C>T (p.R561X), experiencing severe grade IV toxicity. Our studies showed that the endogenous levels of uracil and the U/UH2 ratio are poor predictors of an impaired DPD activity. Loading studies with uracil to identify patients with a DPD deficiency warrants further investigation.
  •  
3.
  • Nakajima, Yoko, et al. (författare)
  • Clinical, biochemical and molecular analysis of 13 Japanese patients with beta-ureidopropionase deficiency demonstrates high prevalence of the c.977G > A (p.R326Q) mutation
  • 2014
  • Ingår i: Journal of Inherited Metabolic Disease. - : Wiley. - 0141-8955 .- 1573-2665. ; 37:5, s. 801-812
  • Tidskriftsartikel (refereegranskat)abstract
    • beta-ureidopropionase (beta UP) deficiency is an autosomal recessive disease characterized by N-carbamyl-beta-amino aciduria. To date, only 16 genetically confirmed patients with beta UP deficiency have been reported. Here, we report on the clinical, biochemical and molecular findings of 13 Japanese beta UP deficient patients. In this group of patients, three novel missense mutations (p.G31S, p.E271K, and p.I286T) and a recently described mutation (p.R326Q) were identified. The p.R326Q mutation was detected in all 13 patients with eight patients being homozygous for this mutation. Screening for the p.R326Q mutation in 110 Japanese individuals showed an allele frequency of 0.9 %. Transient expression of mutant beta UP enzymes in HEK293 cells showed that the p.E271K and p.R326Q mutations cause profound decreases in activity (a parts per thousand currency sign 1.3 %). Conversely, beta UP enzymes containing the p.G31S and p.I286T mutations possess residual activities of 50 and 70 %, respectively, suggesting we cannot exclude the presence of additional mutations in the non-coding region of the UPB1 gene. Analysis of a human beta UP homology model revealed that the effects of the mutations (p.G31S, p.E271K, and p.R326Q) on enzyme activity are most likely linked to improper oligomer assembly. Highly variable phenotypes ranging from neurological involvement (including convulsions and autism) to asymptomatic, were observed in diagnosed patients. High prevalence of p.R326Q in the normal Japanese population indicates that beta UP deficiency is not as rare as generally considered and screening for beta UP deficiency should be included in diagnosis of patients with unexplained neurological abnormalities.
  •  
4.
  • Nakajima, Yoko, et al. (författare)
  • Dihydropyrimidinase deficiency in four East Asian patients due to novel and rare DPYS mutations affecting protein structural integrity and catalytic activity
  • 2017
  • Ingår i: Molecular Genetics and Metabolism. - : Elsevier BV. - 1096-7192 .- 1096-7206. ; 122:4, s. 216-222
  • Tidskriftsartikel (refereegranskat)abstract
    • Dihydropyrimidinase (DHP) is the second enzyme of the pyrimidine degradation pathway and catalyzes the ring opening of 5,6-dihydrouracil and 5,6-dihydrothymine. To date, only 31 genetically confirmed patients with a DHP deficiency have been reported and the clinical, biochemical and genetic spectrum of DHP deficient patients is, therefore, still largely unknown. Here, we show that 4 newly identified DHP deficient patients presented with strongly elevated levels of 5,6-dihydrouracil and 5,6-dihydrothymine in urine and a highly variable clinical presentation, ranging from asymptomatic to infantile spasm and reduced white matter and brain atrophy. Analysis of the DHP gene (DPYS) showed the presence of 8 variants including 4 novel/rare missense variants and one novel deletion. Functional analysis of recombinantly expressed DHP mutants carrying the p.M250I, p.H295R, p.Q334R, p.T418I and the p.R490H variant showed residual DHP activities of 2.0%, 9.8%, 9.7%, 64% and 0.3%, respectively. The crystal structure of human DHP indicated that all point mutations were likely to cause rearrangements of loops shaping the active site, primarily affecting substrate binding and stability of the enzyme. The observation that the identified mutations were more prevalent in East Asians and the Japanese population indicates that DHP deficiency may be more common than anticipated in these ethnic groups.
  •  
5.
  • van Karnebeek, Clara D. M., et al. (författare)
  • CIAO1 and MMS19 de fi ciency : A lethal neurodegenerative phenotype caused by cytosolic Fe-S cluster protein assembly disorders
  • 2024
  • Ingår i: Genetics in Medicine. - : Elsevier. - 1098-3600 .- 1530-0366. ; 26:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: The functionality of many cellular proteins depends on cofactors; yet, they have only been implicated in a minority of Mendelian diseases. Here, we describe the first 2 inherited disorders of the cytosolic iron-sulfur protein assembly system.Methods: Genetic testing via genome sequencing was applied to identify the underlying disease cause in 3 patients with microcephaly, congenital brain malformations, progressive developmental and neurologic impairments, recurrent infections, and a fatal outcome. Studies in patient-derived skin fibroblasts and zebrafish models were performed to investigate the biochemical and cellular consequences.Results: Metabolic analysis showed elevated uracil and thymine levels in body fluids but no pathogenic variants in DPYD, encoding dihydropyrimidine dehydrogenase. Genome sequencing identified compound heterozygosity in 2 patients for missense variants in CIAO1, encoding cytosolic iron-sulfur assembly component 1, and homozygosity for an in-frame 3-nucleotide deletion in MMS19, encoding the MMS19 homolog, cytosolic iron-sulfur assembly component, in the third patient. Profound alterations in the proteome, metabolome, and lipidome were observed in patient-derived fibroblasts. We confirmed the detrimental effect of deficiencies in CIAO1 and MMS19 in zebrafish models.Conclusion: A general failure of cytosolic and nuclear iron-sulfur protein maturation caused pleiotropic effects. The critical function of the cytosolic iron-sulfur protein assembly machinery for antiviral host defense may well explain the recurrent severe infections occurring in our patients. (c) 2024 The Authors. Published by Elsevier Inc. on behalf of American College of Medical Genetics and Genomics. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
6.
  • van Kuilenburg, André B P, et al. (författare)
  • Clinical, biochemical and genetic findings in two siblings with a dihydropyrimidinase deficiency
  • 2007
  • Ingår i: Molecular Genetics and Metabolism. - : Elsevier BV. - 1096-7192 .- 1096-7206. ; 91:2, s. 157-164
  • Tidskriftsartikel (refereegranskat)abstract
    • Dihydropyrimidinase (DHP) is the second enzyme of the pyrimidine degradation pathway and it catalyses the ring opening of 5,6-dihydrouracil and 5,6-dihydrothymine to N-carbamyl-beta-alanine and N-carbamyl-beta-aminoisobutyric acid, respectively. To date, only nine individuals have been reported suffering from a complete DHP deficiency. We report two siblings presenting with strongly elevated levels of 5,6-dihydrouracil and 5,6-dihydrothymine in plasma, cerebrospinal fluid and urine. One of the siblings had a severe delay in speech development and white matter abnormalities, whereas the other one was free of symptoms. Analysis of the DHP gene (DPYS) showed that both patients were compound heterozygous for the missense mutation 1078T>C (W360R) in exon 6 and a novel missense mutation 1235G>T (R412M) in exon 7. Heterologous expression of the mutant enzymes in Escherichia coli showed that both missense mutations resulted in a mutant DHP enzyme without residual activity. Analysis of the crystal structure of eukaryotic DHP from the yeast Saccharomyces kluyveri and the slime mold Dictyostelium discoideum suggests that the W360R and R412M mutations lead to structural instability of the enzyme which could potentially impair the assembly of the tetramer.
  •  
7.
  • van Kuilenburg, André B P, et al. (författare)
  • Dihydropyrimidinase deficiency : Phenotype, genotype and structural consequences in 17 patients
  • 2010
  • Ingår i: Biochimica et Biophysica Acta - Molecular Basis of Disease. - : Elsevier BV. - 0925-4439 .- 1879-260X. ; 1802:7-8, s. 639-648
  • Tidskriftsartikel (refereegranskat)abstract
    • Dihydropyrimidinase (DHP) is the second enzyme of the pyrimidine degradation pathway and catalyses the ring opening of 5,6-dihydrouracil and 5,6-dihydrothymine. To date, only 11 individuals have been reported suffering from a complete DHP deficiency. Here, we report on the clinical, biochemical and molecular findings of 17 newly identified DHP deficient patients as well as the analysis of the mutations in a three-dimensional framework. Patients presented mainly with neurological and gastrointestinal abnormalities and markedly elevated levels of 5,6-dihydrouracil and 5,6-dihydrothymine in plasma, cerebrospinal fluid and urine. Analysis of DPYS, encoding DHP, showed nine missense mutations, two nonsense mutations, two deletions and one splice-site mutation. Seventy-one percent of the mutations were located at exons 5-8, representing 41% of the coding sequence. Heterologous expression of 11 mutant enzymes in Escherichia coli showed that all but two missense mutations yielded mutant DHP proteins without significant activity. Only DHP enzymes containing the mutations p.R302Q and p.T343A possessed a residual activity of 3.9% and 49%, respectively. The crystal structure of human DHP indicated that the point mutations p.R490C, p.R302Q and p.V364M affect the oligomerization of the enzyme. In contrast, p.M70T, p.D81G, p.L337P and p.T343A affect regions near the di-zinc centre and the substrate binding site. The p.S379R and p.L7V mutations were likely to cause structural destabilization and protein misfolding. Four mutations were identified in multiple unrelated DHP patients, indicating that DHP deficiency may be more common than anticipated.
  •  
8.
  • Van Kuilenburg, André B P, et al. (författare)
  • Identification of three novel mutations in the dihydropyrimidine dehydrogenase gene associated with altered pre-mRNA splicing or protein function
  • 2005
  • Ingår i: Biological chemistry (Print). - 1431-6730 .- 1437-4315. ; 386:4, s. 319-324
  • Tidskriftsartikel (refereegranskat)abstract
    • Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of the pyrimidine bases uracil and thymine, as well as of the widely used chemotherapeutic drug 5-fluorouracil (5FU). Analysis of the DPD gene ( DPYD ) in two patients presenting with complete DPD deficiency and the parents of an affected child showed the presence of three novel mutations, including one splice site mutation IVS11 + 1G-->T and the missense mutations 731A-->C (E244V) and 1651G-->A (A551T). The G-->T mutation in the invariant GT splice donor site flanking exon 11 (IVS11 + 1G-->T) created a cryptic splice site within exon 11. As a consequence, a 141-bp fragment encoding the aminoacid residues 400-446 of the primary sequence of the DPD protein was missing in the mature DPD mRNA. Analysis of the crystal structure of pig DPD suggested that the E244V mutation might interfere with the electron flow between NADPH and the pyrimidine binding site of DPD. The A551T point mutation might prevent binding of the prosthetic group FMN and affect folding of the DPD protein. The identification of these novel mutations in DPYD will allow the identification of patients with an increased risk of developing severe 5FU-associated toxicity.
  •  
9.
  • van Kuilenburg, André B P, et al. (författare)
  • Intragenic deletions and a deep intronic mutation affecting pre-mRNA splicing in the dihydropyrimidine dehydrogenase gene as novel mechanisms causing 5-fluorouracil toxicity
  • 2010
  • Ingår i: Human Genetics. - : Springer Science and Business Media LLC. - 0340-6717 .- 1432-1203. ; 128:5, s. 529-538
  • Tidskriftsartikel (refereegranskat)abstract
    • Dihydropyrimidine dehydrogenase (DPD) is the initial enzyme acting in the catabolism of the widely used antineoplastic agent 5-fluorouracil (5FU). DPD deficiency is known to cause a potentially lethal toxicity following administration of 5FU. Here, we report novel genetic mechanisms underlying DPD deficiency in patients presenting with grade III/IV 5FU-associated toxicity. In one patient a genomic DPYD deletion of exons 21-23 was observed. In five patients a deep intronic mutation c.1129-5923C>G was identified creating a cryptic splice donor site. As a consequence, a 44 bp fragment corresponding to nucleotides c.1129-5967 to c.1129-5924 of intron 10 was inserted in the mature DPD mRNA. The deleterious c.1129-5923C>G mutation proved to be in cis with three intronic polymorphisms (c.483 + 18G>A, c.959-51T>G, c.680 + 139G>A) and the synonymous mutation c.1236G>A of a previously identified haplotype. Retrospective analysis of 203 cancer patients showed that the c.1129-5923C>G mutation was significantly enriched in patients with severe 5FU-associated toxicity (9.1%) compared to patients without toxicity (2.2%). In addition, a high prevalence was observed for the c.1129-5923C>G mutation in the normal Dutch (2.6%) and German (3.3%) population. Our study demonstrates that a genomic deletion affecting DPYD and a deep intronic mutation affecting pre-mRNA splicing can cause severe 5FU-associated toxicity. We conclude that screening for DPD deficiency should include a search for genomic rearrangements and aberrant splicing.
  •  
10.
  • van Kuilenburg, André B P, et al. (författare)
  • Novel disease-causing mutations in the dihydropyrimidine dehydrogenase gene interpreted by analysis of the three-dimensional protein structure
  • 2002
  • Ingår i: Biochemical Journal. - : Portland Press Ltd.. - 0264-6021 .- 1470-8728. ; 364:Pt 1, s. 157-163
  • Tidskriftsartikel (refereegranskat)abstract
    • Dihydropyrimidine dehydrogenase (DPD) deficiency is an autosomal recessive disease characterized by thymine-uraciluria in homozygous deficient patients. Cancer patients with a partial deficiency of DPD are at risk of developing severe life-threatening toxicities after the administration of 5-fluorouracil. Thus, identification of novel disease-causing mutations is of the utmost importance to allow screening of patients at risk. In eight patients presenting with a complete DPD deficiency, a considerable variation in the clinical presentation was noted. Whereas motor retardation was observed in all patients, no patients presented with convulsive disorders. In this group of patients, nine novel mutations were identified including one deletion of two nucleotides [1039-1042delTG] and eight missense mutations. Analysis of the crystal structure of pig DPD suggested that five out of eight amino acid exchanges present in these patients with a complete DPD deficiency, Pro86Leu, Ser201Arg, Ser492Leu, Asp949Val and His978Arg, interfered directly or indirectly with cofactor binding or electron transport. Furthermore, the mutations Ile560Ser and Tyr211Cys most likely affected the structural integrity of the DPD protein. Only the effect of the Ile370Val and a previously identified Cys29Arg mutation could not be readily explained by analysis of the three-dimensional structure of the DPD enzyme, suggesting that at least the latter might be a common polymorphism. Our data demonstrate for the first time the possible consequences of missense mutations in the DPD gene on the function and stability of the DPD enzyme.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy