SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Meirose Bernhard) srt2:(2020-2024)"

Sökning: WFRF:(Meirose Bernhard) > (2020-2024)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abele, H., et al. (författare)
  • Particle physics at the European Spallation Source
  • 2023
  • Ingår i: Physics reports. - : Elsevier. - 0370-1573 .- 1873-6270. ; 1023, s. 1-84
  • Forskningsöversikt (refereegranskat)abstract
    • Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world’s brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches).
  •  
2.
  • Addazi, A., et al. (författare)
  • New high-sensitivity searches for neutrons converting into antineutrons and/or sterile neutrons at the HIBEAM/NNBAR experiment at the European Spallation Source
  • 2021
  • Ingår i: Journal of Physics G. - : Institute of Physics Publishing (IOPP). - 0954-3899 .- 1361-6471. ; 48:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The violation of baryon number, , is an essential ingredient for the preferential creation of matter over antimatter needed to account for the observed baryon asymmetry in the Universe. However, such a process has yet to be experimentally observed. The HIBEAM/NNBAR program is a proposed two-stage experiment at the European Spallation Source to search for baryon number violation. The program will include high-sensitivity searches for processes that violate baryon number by one or two units: free neutron–antineutron oscillation () via mixing, neutron–antineutron oscillation via regeneration from a sterile neutron state (), and neutron disappearance (n → n'); the effective process of neutron regeneration () is also possible. The program can be used to discover and characterize mixing in the neutron, antineutron and sterile neutron sectors. The experiment addresses topical open questions such as the origins of baryogenesis and the nature of dark matter, and is sensitive to scales of new physics substantially in excess of those available at colliders. A goal of the program is to open a discovery window to neutron conversion probabilities (sensitivities) by up to three orders of magnitude compared with previous searches. The opportunity to make such a leap in sensitivity tests should not be squandered. The experiment pulls together a diverse international team of physicists from the particle (collider and low energy) and nuclear physics communities, while also including specialists in neutronics and magnetics.
  •  
3.
  • Backman, Filip, 1991-, et al. (författare)
  • The development of the NNBAR experiment
  • 2022
  • Ingår i: Journal of Instrumentation. - : Institute of Physics (IOP). - 1748-0221 .- 1748-0221. ; 17:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The NNBAR experiment for the European Spallation Source will search for free neutrons converting to antineutrons with a sensitivity improvement of three orders of magnitude compared to the last such search. This paper describes progress towards a conceptual design report for NNBAR. The design of a moderator, neutron reflector, beamline, shielding and annihilation detector is reported. The simulations used form part of a model which will be used for optimisation of the experiment design and quantification of its sensitivity.
  •  
4.
  • Barrow, Joshua, et al. (författare)
  • Computing and Detector Simulation Framework for the HIBEAM/NNBAR Experimental Program at the ESS
  • 2021
  • Ingår i: 25<sup>th</sup> International Conference on Computing in High Energy and Nuclear Physics (CHEP 2021). - : EDP Sciences.
  • Konferensbidrag (refereegranskat)abstract
    • The HIBEAM/NNBAR program is a proposed two-stage experiment at the European Spallation Source focusing on searches for baryon number violation via processes in which neutrons convert to antineutrons. This paper outlines the computing and detector simulation framework for the HIBEAM/NNBAR program. The simulation is based on predictions of neutron flux and neutronics together with signal and background generation. A range of diverse simulation packages are incorporated, including Monte Carlo transport codes, neutron ray-tracing simulation packages, and detector simulation software. The common simulation package in which these elements are interfaced together is discussed. Data management plans and triggers are also described.
  •  
5.
  • Gudkov, Vladimir, et al. (författare)
  • A Possible Neutron-Antineutron Oscillation Experiment at PF1B at the Institut Laue Langevin
  • 2021
  • Ingår i: Symmetry. - : MDPI AG. - 2073-8994. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • We consider a possible neutron–antineutron (n−n¯) oscillation experiment at the PF1B instrument at Institut Laue Langevin. It can improve the best existing constraint on the transition rate and also allow the testing of the methods and instrumentation which would be needed for a later larger-scale experiment at ESS. The main gain factors over the most competitive experiment, performed earlier at PF1 instrument at ILL, are: a more intense neutron beam and a new operating mode based on coherent n and n¯ mirror reflections. The installation of such an experiment would need a temporary replacement of the existing ballistic neutron guide by a specially designed n/n¯ guide with a gradually increasing cross section and a specially selected coating as well as the development and construction of an advanced n¯ annihilation detector with a high efficiency and low background. The overall gain factor could reach up to an order of magnitude and depends on the chosen experiment configuration.
  •  
6.
  • Meirose, Bernhard, et al. (författare)
  • Real-time accelerator diagnostic tools for the max iv storage rings
  • 2020
  • Ingår i: Instruments. - : MDPI AG. - 2410-390X. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, beam diagnostic and monitoring tools developed by the MAX IV Operations Group are discussed. In particular, beam position monitoring and accelerator tunes visualization software tools, as well as tools that directly influence the beam quality and stability, are introduced. An availability and downtime monitoring application is also presented.
  •  
7.
  • Santoro, V., et al. (författare)
  • The HighNESS Project at the European Spallation Source : Current Status and Future Perspectives
  • 2024
  • Ingår i: Nuclear science and engineering. - 0029-5639 .- 1943-748X. ; 198:1, s. 31-63
  • Tidskriftsartikel (refereegranskat)abstract
    • The European Spallation Source (ESS), presently under construction in Lund, Sweden, is a multidisciplinary international laboratory that, once completed at full specifications, will operate the world's most powerful pulsed neutron source. Supported by a 3 M Euro Research and Innovation Action within the European Union Horizon 2020 program, a design study (HighNESS) is now underway to develop a second neutron source located below the spallation target. Compared to the first source, which is located above the spallation target and designed for high cold and thermal brightness, the new source is being optimized to deliver higher intensity and a shift to longer wavelengths in the spectral regions of cold neutrons (CNs) (2 to 20 & Aring;), very cold neutrons (VCNs) (10 to 120 & Aring;), and ultracold neutrons (UCNs) (> 500 & Aring;). The second source consists of a large liquid deuterium moderator to deliver CNs and serve secondary VCN and UCN sources, for which different options are under study. These new sources will boost several areas of condensed matter research and will provide unique opportunities in fundamental physics. The HighNESS project is now entering its last year, and we are working toward the Conceptual Design Report of the ESS upgrade. In this paper, results obtained in the first 2 years, ongoing developments, and future perspectives are described.
  •  
8.
  • Wagner, R., et al. (författare)
  • Design of an optimized nested-mirror neutron reflector for a NNBAR experiment
  • 2023
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002 .- 1872-9576. ; 1051
  • Tidskriftsartikel (refereegranskat)abstract
    • The NNBAR experiment for the European Spallation Source will search for free neutrons converting to antineutrons with an expected sensitivity improvement of three orders of magnitude compared to the last such search. This paper describes both the simulations of a key component for the experiment, the neutron optical reflector and the expected gains in sensitivity.
  •  
9.
  • Yiu, Sze-Chun, et al. (författare)
  • Status of the Design of an Annihilation Detector to Observe Neutron-Antineutron Conversions at the European Spallation Source
  • 2022
  • Ingår i: Symmetry. - : MDPI AG. - 2073-8994. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The goal of the HIBEAM/NNBAR program is to search for baryon number violation via the conversion or oscillation of neutrons into sterile neutrons and/or antineutrons at the European Spallation Source. A key experimental component of the program is the construction of an annihilation detector to directly observe the production of an antineutron following the oscillation. Design studies for the annihilation detector are presented. The predicted response of the detector models are studied using GEANT4 simulations made with Monte Carlo simulations of the annihilation signal topology and cosmic ray backgrounds. Particle identification and sensitive discriminating observables, such as invariant mass and sphericity, are shown.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy