SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Melianas Armantas) srt2:(2015)"

Sökning: WFRF:(Melianas Armantas) > (2015)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bergqvist, Jonas, et al. (författare)
  • Time-resolved morphology formation of solution cast polymer : fullerene blends revealed by in-situ photoluminescence spectroscopy
  • 2015
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The nanoscale morphology of the photo-active layer in organic solar cells is critical for device efficiency. The photoactive layer is cast from solution and during drying both the polymer and the fullerene self-assemble to form a blend. Here, we introduce in-situ spectroscopic photoluminescence (PL) combined with laser reflectometry to monitor the drying process of an amorphous polymer:fullerene blend. When casting only the pristine components (polymer or PCBM only), the strength of PL emission is proportional to the solid content of the drying solution, and both kinetics reveal a rapid aggregation onset at the final stage of film drying. On the contrary, when casting polymer:fullerene blends, the strength of PL emission is proportional to the wet film thickness and reveals polymer/fullerene charge transfer (CT) already at the earliest stages of film drying, i.e. in dilute solutions. The proposed method allows to detect polymer/fullerene phase separation during film casting – from a reduction in the PL quenching rate as the film dries. Poor solvents lead to phase separation already at early stages of film drying (low solid content), resulting in a coarse final morphology as confirmed by atomic force microscopy (AFM). We therefore anticipate that the proposed method will be an important tool in the future development of processing inks, not only for solution-cast polymer:fullerene solar cells but also for organic heterojunctions in general.
  •  
2.
  • Diaz de Zerio Mendaza, Amaia, 1986, et al. (författare)
  • High-Entropy Mixtures of Pristine Fullerenes for Solution-Processed Transistors and Solar Cells
  • 2015
  • Ingår i: Advanced Materials. - : Wiley. - 0935-9648 .- 1521-4095. ; 27:45, s. 7325-7331
  • Tidskriftsartikel (refereegranskat)abstract
    • The solubility of pristine fullerenes can be enhanced by mixing C60 and C70 due to the associated increase in configurational entropy. This "entropic dissolution" allows the preparation of field-effect transistors with an electron mobility of 1 cm2 V-1 s-1 and polymer solar cells with a highly reproducible power-conversion efficiency of 6%, as well as a thermally stable active layer.
  •  
3.
  • Kroon, Renee, 1982, et al. (författare)
  • Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cells
  • 2015
  • Ingår i: Polymer Chemistry. - : Royal Society of Chemistry (RSC). - 1759-9954 .- 1759-9962. ; 6:42, s. 7402-7409
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we compare the effect of incorporating selenophene versus thienothiophene spacers into pentacyclic lactam-based conjugated polymers for organic solar cells. The two cyclic lactam-based copolymers were obtained via a new synthetic method for the lactam moiety. Selenophene incorporation results in a broader and red-shifted optical absorption while retaining a deep highest occupied molecular orbital level, whereas thienothienophene incorporation results in a blue-shifted optical absorption. Additionally, grazing-incidence wide angle X-ray scattering data indicates edge- and face-on solid state order for the selenophene-based polymer as compared to the thienothiophene-based polymer, which orders predominantly edge-on with respect to the substrate. In polymer : PC71BM bulk heterojunction solar cells both materials show a similar open-circuit voltage of similar to 0.80-0.84 V, however the selenophene-based polymer displays a higher fill factor of similar to 0.70 vs. similar to 0.65. This is due to the partial face-on backbone orientation of the selenophene-based polymer, leading to a higher hole mobility, as confirmed by single-carrier diode measurements, and a concomitantly higher fill factor. Combined with improved spectral coverage of the selenophene-based polymer, as confirmed by quantum efficiency experiments, it offers a larger short-circuit current density of similar to 12 mA cm(-2). Despite the relatively low molecular weight of both materials, a very robust power conversion efficiency similar to 7% is achieved for the selenophene-based polymer, while the thienothiophene-based polymer demonstrates only a moderate maximum PCE of similar to 5.5%. Hence, the favorable effects of selenophene incorporation on the photovoltaic performance of pentacyclic lactam-based conjugated polymers are clearly demonstrated.
  •  
4.
  • Melianas, Armantas, et al. (författare)
  • Photo-generated carriers lose energy during extraction from polymer-fullerene solar cells
  • 2015
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 6:8778
  • Tidskriftsartikel (refereegranskat)abstract
    • In photovoltaic devices, the photo-generated charge carriers are typically assumed to be in thermal equilibrium with the lattice. In conventional materials, this assumption is experimentally justified as carrier thermalization completes before any significant carrier transport has occurred. Here, we demonstrate by unifying time-resolved optical and electrical experiments and Monte Carlo simulations over an exceptionally wide dynamic range that in the case of organic photovoltaic devices, this assumption is invalid. As the photo-generated carriers are transported to the electrodes, a substantial amount of their energy is lost by continuous thermalization in the disorder broadened density of states. Since thermalization occurs downward in energy, carrier motion is boosted by this process, leading to a time-dependent carrier mobility as confirmed by direct experiments. We identify the time and distance scales relevant for carrier extraction and show that the photo-generated carriers are extracted from the operating device before reaching thermal equilibrium.
  •  
5.
  •  
6.
  • Tang, Zheng, et al. (författare)
  • Fully-solution-processed organic solar cells with a highly efficient paper-based light trapping element
  • 2015
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 3:48, s. 24289-24296
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate the use of low cost paper as an efficient light-trapping element for thin film photovoltaics. We verify its use in fully-solution processed organic photovoltaic devices with the highest power conversion efficiency and the lowest internal electrical losses reported so far, the architecture of which - unlike most of the studied geometries to date - is suitable for upscaling, i.e. commercialization. The use of the paper-reflector enhances the external quantum efficiency (EQE) of the organic photovoltaic device by a factor of approximate to 1.5-2.5 over the solar spectrum, which rivals the light harvesting efficiency of a highly-reflective but also considerably more expensive silver mirror back-reflector. Moreover, by detailed theoretical and experimental analysis, we show that further improvements in the photovoltaic performance of organic solar cells employing PEDOT:PSS as both electrodes rely on the future development of high-conductivity and high-transmittance PEDOT:PSS. This is due optical losses in the PEDOT:PSS electrodes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy