SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Melianas Armantas) srt2:(2017)"

Sökning: WFRF:(Melianas Armantas) > (2017)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Diaz de Zerio Mendaza, Amaia, et al. (författare)
  • A fullerene alloy based photovoltaic blend with a glass transition temperature above 200 degrees C
  • 2017
  • Ingår i: Journal of Materials Chemistry A. - : ROYAL SOC CHEMISTRY. - 2050-7488 .- 2050-7496. ; 5:8, s. 4156-4162
  • Tidskriftsartikel (refereegranskat)abstract
    • Organic solar cells with a high degree of thermal stability require bulk-heterojunction blends that feature a high glass transition, which must occur considerably above the temperatures encountered during device fabrication and operation. Here, we demonstrate for the first time a polymer : fullerene blend with a glass transition temperature above 200 degrees C, which we determine by plasmonic nanospectroscopy. We achieve this strong tendency for glass formation through the use of an alloy of neat, unsubstituted C-60 and C-70, which we combine with the fluorothieno-benzodithiophene copolymer PTB7. A stable photovoltaic performance of PTB7 : C60 : C70 ternary blends is preserved despite annealing the active layer at up to 180 degrees C, which coincides with the onset of the glass transition. Rapid deterioration of the power conversion efficiency from initially above 5% only occurs upon exceeding the glass transition temperature of 224 degrees C of the ternary blend.
  •  
2.
  • Felekidis, Nikolaos, et al. (författare)
  • Design Rule for Improved Open-Circuit Voltage in Binary and Ternary Organic Solar Cells
  • 2017
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 9:42, s. 37070-37077
  • Tidskriftsartikel (refereegranskat)abstract
    • Mixing different compounds to improve functionality is one of the pillars of the organic electronics field. Here, the degree to which the charge transport properties of the constituent materials are simply additive when materials are mixed is quantified. It is demonstrated that in bulk heterojunction organic solar cells, hole mobility in the donor phase depends critically on the choice of the acceptor material, which may alter the energetic disorder of the donor. The same holds for electron mobility and disorder in the acceptor. The associated mobility differences can exceed an order of magnitude compared to pristine materials. Quantifying these effects by a state-filling model for the open-circuit voltage (V-oc) of ternary Donor:Acceptor(l):Acceptor(2) (D:A(1):A(2)) organic solar cells leads to a physically transparent description of the surprising, nearly linear tunability of the Voc with the A(1):A(2) weight ratio. It is predicted that in binary OPV systems, suitably chosen donor and acceptor materials can improve the device power conversion efficiency (PCE) by several percentage points, for example from 11 to 13.5% for a hypothetical state-ofthe-art organic solar cell, highlighting the importance of this design rule.
  •  
3.
  • Melianas, Armantas, 1988-, et al. (författare)
  • Charge Transport in Pure and Mixed Phases in Organic Solar Cells
  • 2017
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 7:20
  • Tidskriftsartikel (refereegranskat)abstract
    • In organic solar cells continuous donor and acceptor networks are considered necessary for charge extraction, whereas discontinuous neat phases and molecularly mixed donor–acceptor phases are generally regarded as detrimental. However, the impact of different levels of domain continuity, purity, and donor–acceptor mixing on charge transport remains only semiquantitatively described. Here, cosublimed donor–acceptor mixtures, where the distance between the donor sites is varied in a controlled manner from homogeneously diluted donor sites to a continuous donor network are studied. Using transient measurements, spanning from sub-picoseconds to microseconds photogenerated charge motion is measured in complete photovoltaic devices, to show that even highly diluted donor sites (5.7%–10% molar) in a buckminsterfullerene matrix enable hole transport. Hopping between isolated donor sites can occur by long-range hole tunneling through several buckminsterfullerene molecules, over distances of up to ≈4 nm. Hence, these results question the relevance of “pristine” phases and whether a continuous interpenetrating donor–acceptor network is the ideal morphology for charge transport.
  •  
4.
  • Melianas, Armantas (författare)
  • Non-Equilibrium Charge Motion in Organic Solar Cells
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Organic photovoltaic (OPV) devices based on semiconducting polymers and small molecules allow for a low cost alternative to inorganic solar cells. Recent developments show power conversion efficiencies as high as 10-12%, highlighting the potential of this technology. Nevertheless, further improvements are necessary to achieve commercialization.To a large extent the performance of these devices is dictated by their ability to extract the photo-generated charge, which is related to the charge carrier mobility. Various time-resolved and steady-state techniques are available to probe the charge carrier mobility in OPVs but often lead to different mobility values for one and the same system. Despite such conflicting observations it is generally assumed that charge transport in OPV devices can be described by well-defined charge carrier mobilities, typically obtained using a single steady-state technique. This thesis shows that the relevance of such well-defined mobilities for the charge separation and extraction processes is very limited.Although different transient techniques probe different time scales after photogeneration, they are mutually consistent as they probe the same physical mechanism governing charge motion – gradual thermalization of the photo-generated carriers in the disorder broadened density of states (DOS). The photo-generated carriers gradually lose their excess energy during transport to the extracting electrodes, but not immediately. Typically not all excess energy is dissipated as the photo-generated carriers tend to be extracted from the OPV device before reaching quasi-equilibrium.Carrier motion is governed by thermalization, leading to a time-dependent carrier mobility that is significantly higher than the steady-state mobility. This picture is confirmed by several transient techniques: Time-resolved Terahertz Spectroscopy (TRTS), Time-resolved Microwave Conductance (TRMC) combined with Transient Absorption (TA), electrical extraction of photo-induced charges (photo-CELIV). The connection between transient and steady-state mobility measurements (space-charge limited conductivity, SCLC) is described. Unification of transient opto-electric techniques to probe charge motion in OPVs is presented.Using transient experiments the distribution of extraction times of photo-generated charges in an operating OPV device has been determined and found to be strongly dispersive, spanning several decades in time. In view of the strong dispersion in extraction times the relevance of even a well-defined time-dependent mean mobility is limited.In OPVs a continuous ‘percolating’ donor network is often considered necessary for efficient hole extraction, whereas if the network is discontinuous, hole transport is thought to deteriorate significantly, limiting device performance. Here, it is shown that even highly diluted donor sites (5.7-10 %) in a buckminsterfullerene (C60) matrix enable reasonably efficient hole transport. Using transient measurements it is demonstrated that hole transport between isolated donor sites can occur by long-range hole tunneling (over distances of ~4 nm) through several C60 molecules – even a discontinuous donor network enables hole transport
  •  
5.
  • Melianas, Armantas, et al. (författare)
  • Photogenerated Carrier Mobility Significantly Exceeds Injected Carrier Mobility in Organic Solar Cells
  • 2017
  • Ingår i: Advanced Energy Materials. - : John Wiley & Sons. - 1614-6832 .- 1614-6840. ; 7:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Charge transport in organic photovoltaic (OPV) devices is often characterized by space-charge limited currents (SCLC). However, this technique only probes the transport of charges residing at quasi-equilibrium energies in the disorder-broadened density of states (DOS). In contrast, in an operating OPV device the photogenerated carriers are typically created at higher energies in the DOS, followed by slow thermalization. Here, by ultrafast time-resolved experiments and simulations it is shown that in disordered polymer/fullerene and polymer/polymer OPVs, the mobility of photogenerated carriers significantly exceeds that of injected carriers probed by SCLC. Time-resolved charge transport in a polymer/polymer OPV device is measured with exceptionally high (picosecond) time resolution. The essential physics that SCLC fails to capture is that of photo­generated carrier thermalization, which boosts carrier mobility. It is predicted that only for materials with a sufficiently low energetic disorder, thermalization effects on carrier transport can be neglected. For a typical device thickness of 100 nm, the limiting energetic disorder is σ ≈71 (56) meV for maximum-power point (short-circuit) conditions, depending on the error one is willing to accept. As in typical OPV materials the disorder is usually larger, the results question the validity of the SCLC method to describe operating OPVs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy