SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mensah George) srt2:(2020-2024)"

Sökning: WFRF:(Mensah George) > (2020-2024)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Roth, Gregory A, et al. (författare)
  • Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019 : Update From the GBD 2019 Study
  • 2020
  • Ingår i: Journal of the American College of Cardiology. - : Elsevier BV. - 0735-1097 .- 1558-3597. ; 76:25, s. 2982-3021
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiovascular diseases (CVDs), principally ischemic heart disease (IHD) and stroke, are the leading cause of global mortality and a major contributor to disability. This paper reviews the magnitude of total CVD burden, including 13 underlying causes of cardiovascular death and 9 related risk factors, using estimates from the Global Burden of Disease (GBD) Study 2019. GBD, an ongoing multinational collaboration to provide comparable and consistent estimates of population health over time, used all available population-level data sources on incidence, prevalence, case fatality, mortality, and health risks to produce estimates for 204 countries and territories from 1990 to 2019. Prevalent cases of total CVD nearly doubled from 271 million (95% uncertainty interval [UI]: 257 to 285 million) in 1990 to 523 million (95% UI: 497 to 550 million) in 2019, and the number of CVD deaths steadily increased from 12.1 million (95% UI:11.4 to 12.6 million) in 1990, reaching 18.6 million (95% UI: 17.1 to 19.7 million) in 2019. The global trends for disability-adjusted life years (DALYs) and years of life lost also increased significantly, and years lived with disability doubled from 17.7 million (95% UI: 12.9 to 22.5 million) to 34.4 million (95% UI:24.9 to 43.6 million) over that period. The total number of DALYs due to IHD has risen steadily since 1990, reaching 182 million (95% UI: 170 to 194 million) DALYs, 9.14 million (95% UI: 8.40 to 9.74 million) deaths in the year 2019, and 197 million (95% UI: 178 to 220 million) prevalent cases of IHD in 2019. The total number of DALYs due to stroke has risen steadily since 1990, reaching 143 million (95% UI: 133 to 153 million) DALYs, 6.55 million (95% UI: 6.00 to 7.02 million) deaths in the year 2019, and 101 million (95% UI: 93.2 to 111 million) prevalent cases of stroke in 2019. Cardiovascular diseases remain the leading cause of disease burden in the world. CVD burden continues its decades-long rise for almost all countries outside high-income countries, and alarmingly, the age-standardized rate of CVD has begun to rise in some locations where it was previously declining in high-income countries. There is an urgent need to focus on implementing existing cost-effective policies and interventions if the world is to meet the targets for Sustainable Development Goal 3 and achieve a 30% reduction in premature mortality due to noncommunicable diseases.
  •  
2.
  •  
3.
  • Agarwal, Anubha, et al. (författare)
  • Toward a Universal Definition of Etiologies in Heart Failure : Categorizing Causes and Advancing Registry Science
  • 2024
  • Ingår i: Circulation Heart Failure. - : American Heart Association. - 1941-3289 .- 1941-3297. ; 17:4
  • Forskningsöversikt (refereegranskat)abstract
    • Heart failure (HF) is a well-described final common pathway for a broad range of diseases however substantial confusion exists regarding how to describe, study, and track these underlying etiologic conditions. We describe (1) the overlap in HF etiologies, comorbidities, and case definitions as currently used in HF registries led or managed by members of the global HF roundtable; (2) strategies to improve the quality of evidence on etiologies and modifiable risk factors of HF in registries; and (3) opportunities to use clinical HF registries as a platform for public health surveillance, implementation research, and randomized registry trials to reduce the global burden of noncommunicable diseases. Investment and collaboration among countries to improve the quality of evidence in global HF registries could contribute to achieving global health targets to reduce noncommunicable diseases and overall improvements in population health.
  •  
4.
  • Das, Oisik, et al. (författare)
  • Flammability and mechanical properties of biochars made in different pyrolysis reactors
  • 2021
  • Ingår i: Biomass and Bioenergy. - : Elsevier. - 0961-9534 .- 1873-2909. ; 152
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of pyrolysis reactors on the properties of biochars (with a focus on flammability and mechanical characteristics) were investigated by keeping factors such as feedstock, carbonisation temperature, heating rate and residence time constant. The reactors employed were hydrothermal, fixed-bed batch vertical and fixed-bed batch horizontal-tube reactors. The vertical and tube reactors, at the same temperature, produced biochars having comparable elemental carbon content, surface functionalities, thermal degradation pattern and peak heat release rates. The hydrothermal reactor, although, a low-temperature process, produced biochar with high fire resistance because the formed tarry volatiles sealed water inside the pores, which hindered combustion. However, the biochar from hydrothermal reactor had the lowest nanoindentation properties whereas the tube reactor-produced biochar at 300 °C had the highest nanoindentation-hardness (290 Megapascal) and modulus (ca. 4 Gigapascal) amongst the other tested samples. Based on the inherent flammability and mechanical properties of biochars, polymeric composites’ properties can be predicted that can include them as constituents.
  •  
5.
  • Lin, Chia-Feng, et al. (författare)
  • Fire Retardancy and Leaching Resistance of Furfurylated Pine Wood (Pinus sylvestris L.) Treated with Guanyl-Urea Phosphate
  • 2022
  • Ingår i: Polymers. - : MDPI. - 2073-4360. ; 14:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Guanyl-urea phosphate (GUP) was introduced into furfurylated wood in order to improve fire retardancy. Modified wood was produced via vacuum-pressure impregnation of the GUP–furfuryl alcohol (FA) aqueous solution, which was then polymerized at elevated temperature. The water leaching resistance of the treated wood was tested according to European standard EN 84, while the leached water was analyzed using ultra-performance liquid chromatography (UPLC) and inductively coupled plasma–sector field mass spectrometry (ICP-SFMS). This new type of furfurylated wood was further characterized in the laboratory by evaluating its morphology and elemental composition using optical microscopy and electron microscopy coupled with energy-dispersive X-ray spectrometry (SEM-EDX). The chemical functionality was detected using infrared spectroscopy (FTIR), and the fire resistance was tested using cone calorimetry. The dimensional stability was evaluated in wet–dry soaking cycle tests, along with the mechanical properties, such as the Brinell hardness and bending strength. The fire retardancy of the modified furfurylated wood indicated that the flammability of wood can be depressed to some extent by introducing GUP. This was reflected in an observed reduction in heat release rate (HRR2) from 454.8 to 264.9 kW/m2, without a reduction in the material properties. In addition, this leaching-resistant furfurylated wood exhibited higher fire retardancy compared to conventional furfurylated wood. A potential method for producing fire-retardant treated furfurylated wood stable to water exposure has been suggested.
  •  
6.
  • Lin, Chia-Feng, et al. (författare)
  • High Leach-Resistant Fire-Retardant Modified Pine Wood (Pinus sylvestris L.) by In Situ Phosphorylation and Carbamylation
  • 2023
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 8:12, s. 11381-11396
  • Tidskriftsartikel (refereegranskat)abstract
    • The exterior application of fire-retardant (FR) timber necessitates it to have high durability because of the possibility to be exposed to rainfall. In this study, water-leaching resistance of FR wood has been imparted by grafting phosphate and carbamate groups of the water-soluble FR additives ammonium dihydrogen phosphate (ADP)/urea onto the hydroxyl groups of wood polymers via vacuum-pressure impregnation, followed by drying/heating in hot air. A darker and more reddish wood surface was observed after the modification. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, solid-state 13C cross-polarization magic-angle-spinning nuclear magnetic resonance (13C CP-MAS NMR), and direct-excitation 31P MAS NMR suggested the formation of C–O–P covalent bonds and urethane chemical bridges. Scanning electron microscopy/energy-dispersive X-ray spectrometry suggested the diffusion of ADP/urea into the cell wall. The gas evolution analyzed by thermogravimetric analysis coupled with quadrupole mass spectrometry revealed a potential grafting reaction mechanism starting with the thermal decomposition of urea. Thermal behavior showed that the FR-modified wood lowered the main decomposition temperature and promoted the formation of char residues at elevated temperatures. The FR activity was preserved even after an extensive water-leaching test, confirmed by the limiting oxygen index (LOI) and cone calorimetry. The reduction of fire hazards was achieved through the increase of the LOI to above 80%, reduction of 30% of the peak heat release rate (pHRR2), reduction of smoke production, and a longer ignition time. The modulus of elasticity of FR-modified wood increased by 40% without significantly decreasing the modulus of rupture.
  •  
7.
  •  
8.
  • Shanmugam, Vigneshwaran, et al. (författare)
  • Circular economy in biocomposite development : State-of-the-art, challenges and emerging trends
  • 2021
  • Ingår i: Composites Part C: Open Access. - : Elsevier. - 2666-6820. ; 5
  • Forskningsöversikt (refereegranskat)abstract
    • Biocomposites being environmentally-friendly alternative to synthetic composites are gaining increasing demand for various applications. Hence, biocomposite development should be integrated within a circular economy (CE) model to ensure a sustainable production that is simultaneously innocuous towards the environment. This review presents an overview of the state-of-the-art technologies for the adoption of the CE concept in biocomposite development. The study outlined the properties, environmental and economic impacts of biocomposites. A critical review of the life-cycle assessment of biocomposite for evaluating greenhouse gas emissions and carbon footprints was conducted. In addition, the opportunities and challenges pertaining to the implementation of CE have been discussed in detail. Recycling and utilisation of bio-based constituents were identified as the critical factors in embracing CE. Therefore, the development of innovative recycling technologies and an enhanced use of novel biocomposite constituents could lead to a reduction in material waste and environmental footprints. This article is one of the first studies to review the circularity of biocomposites in detail that will stimulate further research in enhancing the sustainability of these polymeric materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy