SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Meurer F) srt2:(2010-2014)"

Sökning: WFRF:(Meurer F) > (2010-2014)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdo, A. A., et al. (författare)
  • The spectral energy distribution of fermi bright blazars
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 716:1, s. 30-70
  • Tidskriftsartikel (refereegranskat)abstract
    • We have conducted a detailed investigation of the broadband spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/gamma-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log nu-log nu F-nu representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low-and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, alpha(ro), and optical to X-ray, alpha(ox), spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency (nu(S)(peak)) is positioned between 10(12.5) and 10(14.5) Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10(13) and 10(17) Hz in featureless BL Lacertae objects. We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter gamma-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum gamma-ray sources, the correlation between nu(S)(peak) and gamma-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars.
  •  
2.
  • Abdo, A. A., et al. (författare)
  • SUZAKU OBSERVATIONS OF LUMINOUS QUASARS : REVEALING THE NATURE OF HIGH-ENERGY BLAZAR EMISSION IN LOW-LEVEL ACTIVITY STATES
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 716:1, s. 835-849
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results from the Suzaku X-ray observations of five flat-spectrum radio quasars (FSRQs), namely PKS 0208-512, Q 0827+243, PKS 1127-145, PKS 1510-089, and 3C 454.3. All these sources were additionally monitored simultaneously or quasi-simultaneously by the Fermi satellite in gamma rays and the Swift UVOT in the UV and optical bands, respectively. We constructed their broadband spectra covering the frequency range from 10(14) Hz up to 10(25) Hz, and those reveal the nature of high-energy emission of luminous blazars in their low-activity states. The analyzed X-ray spectra are well fitted by a power-law model with photoelectric absorption. In the case of PKS 0208-512, PKS 1127-145, and 3C 454.3, the X-ray continuum showed indication of hardening at low energies. Moreover, when compared with the previous X-ray observations, we see a significantly increasing contribution of low-energy photons to the total X-ray fluxes when the sources are getting fainter. The same behavior can be noted in the Suzaku data alone. A likely explanation involves a variable, flat-spectrum component produced via inverse-Compton emission, plus an additional, possibly steady soft X-ray component prominent when the source gets fainter. This soft X-ray excess is represented either by a steep power-law (photon indices Gamma similar to 3-5) or a blackbody-type emission with temperatures kT similar to 0.1-0.2 keV. We model the broadband spectra of the five observed FSRQs using synchrotron self-Compton and/or external-Compton radiation models. Our modeling suggests that the difference between the low-and high-activity states in luminous blazars is due to the different total kinetic power of the jet, most likely related to varying bulk Lorentz factor of the outflow within the blazar emission zone.
  •  
3.
  • Abdo, A. A., et al. (författare)
  • Fermi large area telescope observations of PSR J1836+5925
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 712:2, s. 1209-1218
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8 million years, a spindown luminosity of 1.1 x 10(34) erg s(-1), and a large off-peak (OP) emission component, making it quite unusual among the known gamma-ray pulsar population. We present an analysis of one year of LAT data, including an updated timing solution, detailed spectral results, and a long-term light curve showing no indication of variability. No evidence for a surrounding pulsar wind nebula is seen and the spectral characteristics of the OP emission indicate it is likely magnetospheric. Analysis of recent XMM-Newton observations of the X-ray counterpart yields a detailed characterization of its spectrum, which, like Geminga, is consistent with that of a neutron star showing evidence for both magnetospheric and thermal emission.
  •  
4.
  • Abdo, A. A., et al. (författare)
  • FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA-X PULSAR WIND NEBULA
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 713:1, s. 146-153
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on gamma-ray observations in the off-pulse window of the Vela pulsar PSR B0833-45 using 11 months of survey data from the Fermi Large Area Telescope (LAT). This pulsar is located in the 8 degrees diameter Vela supernova remnant, which contains several regions of non-thermal emission detected in the radio, X-ray, and gamma-ray bands. The gamma-ray emission detected by the LAT lies within one of these regions, the 2 degrees x 3 degrees area south of the pulsar known as Vela-X. The LAT flux is significantly spatially extended with a best-fit radius of 0.degrees 88 +/- 0.degrees 12 for an assumed radially symmetric uniform disk. The 200 MeV to 20 GeV LAT spectrum of this source is well described by a power law with a spectral index of 2.41 +/- 0.09 +/- 0.15 and integral flux above 100 MeV of (4.73 +/- 0.63 +/- 1.32) x 10(-7) cm(-2) s(-1). The first errors represent the statistical error on the fit parameters, while the second ones are the systematic uncertainties. Detailed morphological and spectral analyses give strong constraints on the energetics and magnetic field of the pulsar wind nebula system and favor a scenario with two distinct electron populations.
  •  
5.
  • Abdo, A. A., et al. (författare)
  • FERMI-LAT OBSERVATIONS OF THE GEMINGA PULSAR
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 720:1, s. 272-283
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the Fermi-LAT observations of the Geminga pulsar, the second brightest non-variable GeV source in the gamma-ray sky and the first example of a radio-quiet gamma-ray pulsar. The observations cover one year, from the launch of the Fermi satellite through 2009 June 15. A data sample of over 60,000 photons enabled us to build a timing solution based solely on gamma-rays. Timing analysis shows two prominent peaks, separated by Delta phi = 0.497 +/- 0.004 in phase, which narrow with increasing energy. Pulsed gamma-rays are observed beyond 18 GeV, precluding emission below 2.7 stellar radii because of magnetic absorption. The phase-averaged spectrum was fitted with a power law with exponential cutoff of spectral index Gamma = (1.30 +/- 0.01 +/- 0.04), cutoff energy E-0 = (2.46 +/- 0.04 +/- 0.17) GeV, and an integral photon flux above 0.1 GeV of (4.14 +/- 0.02 +/- 0.32) x 10(-6) cm(-2) s(-1). The first uncertainties are statistical and the second ones are systematic. The phase-resolved spectroscopy shows a clear evolution of the spectral parameters, with the spectral index reaching a minimum value just before the leading peak and the cutoff energy having maxima around the peaks. The phase-resolved spectroscopy reveals that pulsar emission is present at all rotational phases. The spectral shape, broad pulse profile, and maximum photon energy favor the outer magnetospheric emission scenarios.
  •  
6.
  • Abdo, A. A., et al. (författare)
  • FERMI OBSERVATIONS OF CASSIOPEIA AND CEPHEUS : DIFFUSE GAMMA-RAY EMISSION IN THE OUTER GALAXY
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 710:1, s. 133-149
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the analysis of the interstellar gamma-ray emission measured by the Fermi Large Area Telescope toward a region in the second Galactic quadrant at 100 degrees <= l <= 145 degrees and -15 degrees <= b <= +30 degrees. This region encompasses the prominent Gould Belt clouds of Cassiopeia, Cepheus, and the Polaris flare, as well as atomic and molecular complexes at larger distances, like that associated with NGC 7538 in the Perseus arm. The good kinematic separation in velocity between the local, Perseus, and outer arms, and the presence of massive complexes in each of them, make this region well suited to probe cosmic rays (CRs) and the interstellar medium beyond the solar circle. The gamma-ray emissivity spectrum of the gas in the Gould Belt is consistent with expectations based on the locally measured CR spectra. The gamma-ray emissivity decreases from the Gould Belt to the Perseus arm, but the measured gradient is flatter than expectations for CR sources peaking in the inner Galaxy as suggested by pulsars. The X-CO = N(H-2)/W-CO conversion factor is found to increase from (0.87 +/- 0.05) x 10(20) cm(-2) (K km s(-1))(-1) in the Gould Belt to (1.9 +/- 0.2) x 10(20) cm(-2) (K km s(-1))(-1) in the Perseus arm. We derive masses for the molecular clouds under study. Dark gas, not properly traced by radio and microwave surveys, is detected in the Gould Belt through a correlated excess of dust and gamma-ray emission: its mass amounts to similar to 50% of the CO-traced mass.
  •  
7.
  • Abdo, A. A., et al. (författare)
  • FERMI OBSERVATIONS OF THE VERY HARD GAMMA-RAY BLAZAR PG 1553+113
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 708:2, s. 1310-1320
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the observations of PG 1553+113 during the first similar to 200 days of Fermi Gamma-ray Space Telescope science operations, from 2008 August 4 to 2009 February 22 (MJD 54682.7-54884.2). This is the first detailed study of PG 1553+113 in the GeV gamma-ray regime and it allows us to fill a gap of three decades in energy in its spectral energy distribution (SED). We find PG 1553+113 to be a steady source with a hard spectrum that is best fit by a simple power law in the Fermi energy band. We combine the Fermi data with archival radio, optical, X-ray, and very high energy (VHE) gamma-ray data to model its broadband SED and find that a simple, one-zone synchrotron self-Compton model provides a reasonable fit. PG 1553+113 has the softest VHE spectrum of all sources detected in that regime and, out of those with significant detections across the Fermi energy bandpass so far, the hardest spectrum in that energy regime. Thus, it has the largest spectral break of any gamma-ray source studied to date, which could be due to the absorption of the intrinsic gamma-ray spectrum by the extragalactic background light (EBL). Assuming this to be the case, we selected a model with a low level of EBL and used it to absorb the power-law spectrum from PG 1553+113 measured with Fermi (200 MeV-157 GeV) to find the redshift, which gave the best fit to the measured VHE data (90 GeV-1.1 TeV) for this parameterization of the EBL. We show that this redshift can be considered an upper limit on the distance to PG 1553+113.
  •  
8.
  • Abdo, A. A., et al. (författare)
  • OBSERVATION OF SUPERNOVA REMNANT IC 443 WITH THE FERMI LARGE AREA TELESCOPE
  • 2010
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 712:1, s. 459-468
  • Tidskriftsartikel (refereegranskat)abstract
    • We report observation of the supernova remnant (SNR) IC 443 (G189.1+3.0) with the Fermi Gamma-ray Space Telescope Large Area Telescope (LAT) in the energy band between 200 MeV and 50 GeV. IC 443 is a shell-type SNR with mixed morphology located off the outer Galactic plane where high-energy emission has been detected in the X-ray, GeV and TeV gamma-ray bands. Past observations suggest IC 443 has been interacting with surrounding interstellar matter. Proximity between dense shocked molecular clouds and GeV-TeV gamma-ray emission regions detected by EGRET, MAGIC, and VERITAS suggests an interpretation that cosmic-ray (CR) particles are accelerated by the SNR. With the high gamma-ray statistics and broad energy coverage provided by the LAT, we accurately characterize the gamma-ray emission produced by the CRs accelerated at IC 443. The emission region is extended in the energy band with theta(68) = 0 degrees.27 +/- 0 degrees.01(stat) +/- 0 degrees.03(sys) for an assumed two-dimensional Gaussian profile and overlaps almost completely with the extended source region of VERITAS. Its centroid is displaced significantly from the known pulsar wind nebula (PWN) which suggests the PWN is not the major contributor in the present energy band. The observed spectrum changes its power-law slope continuously and continues smoothly to the MAGIC and VERITAS data points. The combined gamma-ray spectrum (200 MeV < E < 2 TeV) is reproduced well by decays of neutral pions produced by a broken power-law proton spectrum with a break around 70 GeV.
  •  
9.
  • Abdo, A. A., et al. (författare)
  • The first fermi large area telescope catalog of gamma-ray pulsars
  • 2010
  • Ingår i: Astrophysical Journal Supplement Series. - : American Astronomical Society. - 0067-0049 .- 1538-4365. ; 187:2, s. 460-494
  • Tidskriftsartikel (refereegranskat)abstract
    • The dramatic increase in the number of known gamma-ray pulsars since the launch of the Fermi Gamma-ray Space Telescope (formerly GLAST) offers the first opportunity to study a sizable population of these high-energy objects. This catalog summarizes 46 high-confidence pulsed detections using the first six months of data taken by the Large Area Telescope (LAT), Fermi's main instrument. Sixteen previously unknown pulsars were discovered by searching for pulsed signals at the positions of bright gamma-ray sources seen with the LAT, or at the positions of objects suspected to be neutron stars based on observations at other wavelengths. The dimmest observed flux among these gamma-ray-selected pulsars is 6.0 x 10(-8) ph cm(-2) s(-1) (for E > 100 MeV). Pulsed gamma-ray emission was discovered from 24 known pulsars by using ephemerides (timing solutions) derived from monitoring radio pulsars. Eight of these new gamma-ray pulsars are millisecond pulsars. The dimmest observed flux among the radio-selected pulsars is 1.4 x 10(-8) ph cm(-2) s(-1) (for E > 100 MeV). The remaining six gamma-ray pulsars were known since the Compton Gamma Ray Observatory mission, or before. The limiting flux for pulse detection is non-uniform over the sky owing to different background levels, especially near the Galactic plane. The pulsed energy spectra can be described by a power law with an exponential cutoff, with cutoff energies in the range similar to 1-5 GeV. The rotational energy-loss rate ((E) over dot) of these neutron stars spans five decades, from similar to 3 x 10(33) erg s(-1) to 5 x 10(38) erg s(-1), and the apparent efficiencies for conversion to gammaray emission range from similar to 0.1% to similar to unity, although distance uncertainties complicate efficiency estimates. The pulse shapes show substantial diversity, but roughly 75% of the gamma-ray pulse profiles have two peaks, separated by greater than or similar to 0.2 of rotational phase. For most of the pulsars, gamma-ray emission appears to come mainly from the outer magnetosphere, while polar-cap emission remains plausible for a remaining few. Spatial associations imply that many of these pulsars power pulsar wind nebulae. Finally, these discoveries suggest that gamma-ray-selected young pulsars are born at a rate comparable to that of their radio-selected cousins and that the birthrate of all young gamma-ray-detected pulsars is a substantial fraction of the expected Galactic supernova rate.
  •  
10.
  • Acciari, V. A., et al. (författare)
  • Discovery of very high energy gamma rays from PKS 1424+240 and multiwavelength constraints on ITS redshift
  • 2010
  • Ingår i: ASTROPHYSICAL JOURNAL LETTERS. - 2041-8205. ; 708:2, s. L100-L106
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the first detection of very high energy(83) (VHE) gamma-ray emission above 140 GeV from PKS 1424+240, a BL Lac object with an unknown redshift. The photon spectrum above 140 GeV measured by VERITAS is well described by a power law with a photon index of 3.8 +/- 0.5(stat) +/- 0.3(syst) and a flux normalization at 200 GeV of (5.1 +/- 0.9(stat) +/- 0.5(syst)) x 10(-11) TeV-1 cm(-2) s(-1), where stat and syst denote the statistical and systematical uncertainties, respectively. The VHE flux is steady over the observation period between MJD 54881 and 55003 (from 2009 February 19 to June 21). Flux variability is also not observed in contemporaneous high-energy observations with the Fermi Large Area Telescope. Contemporaneous X-ray and optical data were also obtained from the Swift XRT and MDM observatory, respectively. The broadband spectral energy distribution is well described by a one-zone synchrotron self-Compton model favoring a redshift of less than 0.1. Using the photon index measured with Fermi in combination with recent extragalactic background light absorption models it can be concluded from the VERITAS data that the redshift of PKS 1424+240 is less than 0.66.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy