SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Meyer Philipp T) srt2:(2021)"

Sökning: WFRF:(Meyer Philipp T) > (2021)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Demichev, Vadim, et al. (författare)
  • A time-resolved proteomic and prognostic map of COVID-19
  • 2021
  • Ingår i: Cell Systems. - : Elsevier BV. - 2405-4712 .- 2405-4720. ; 12:8, s. 780-794.e7
  • Tidskriftsartikel (refereegranskat)abstract
    • COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease.
  •  
2.
  • Becker, Joel, et al. (författare)
  • Resource profile and user guide of the Polygenic Index Repository
  • 2021
  • Ingår i: Nature Human Behaviour. - : Nature Research (part of Springer Nature). - 2397-3374. ; 51:6, s. 694-695
  • Tidskriftsartikel (refereegranskat)abstract
    • Polygenic indexes (PGIs) are DNA-based predictors. Their value for research in many scientific disciplines is growing rapidly. As a resource for researchers, we used a consistent methodology to construct PGIs for 47 phenotypes in 11 datasets. To maximize the PGIs’ prediction accuracies, we constructed them using genome-wide association studies—some not previously published—from multiple data sources, including 23andMe and UK Biobank. We present a theoretical framework to help interpret analyses involving PGIs. A key insight is that a PGI can be understood as an unbiased but noisy measure of a latent variable we call the ‘additive SNP factor’. Regressions in which the true regressor is this factor but the PGI is used as its proxy therefore suffer from errors-in-variables bias. We derive an estimator that corrects for the bias, illustrate the correction, and make a Python tool for implementing it publicly available. © 2021, The Author(s), under exclusive licence to Springer Nature Limited.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy