SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Miguel Aliaga Irene) srt2:(2005-2009)"

Sökning: WFRF:(Miguel Aliaga Irene) > (2005-2009)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baumgardt, Magnus, et al. (författare)
  • Specification of neuronal identities by feedforward combinatorial coding.
  • 2007
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 5:2, s. 0295-0308
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal specification is often seen as a multistep process: earlier regulators confer broad neuronal identity and are followed by combinatorial codes specifying neuronal properties unique to specific subtypes. However, it is still unclear whether early regulators are re-deployed in subtype-specific combinatorial codes, and whether early patterning events act to restrict the developmental potential of postmitotic cells. Here, we use the differential peptidergic fate of two lineage-related peptidergic neurons in the Drosophila ventral nerve cord to show how, in a feedforward mechanism, earlier determinants become critical players in later combinatorial codes. Amongst the progeny of neuroblast 5-6 are two peptidergic neurons: one expresses FMRFamide and the other one expresses Nplp1 and the dopamine receptor DopR. We show the HLH gene collier functions at three different levels to progressively restrict neuronal identity in the 5-6 lineage. At the final step, collier is the critical combinatorial factor that differentiates two partially overlapping combinatorial codes that define FMRFamide versus Nplp1/DopR identity. Misexpression experiments reveal that both codes can activate neuropeptide gene expression in vast numbers of neurons. Despite their partially overlapping composition, we find that the codes are remarkably specific, with each code activating only the proper neuropeptide gene. These results indicate that a limited number of regulators may constitute a potent combinatorial code that dictates unique neuronal cell fate, and that such codes show a surprising disregard for many global instructive cues.
  •  
2.
  • Miguel-Aliaga, Irene, et al. (författare)
  • Postmitotic specification of Drosophila insulinergic neurons from pioneer neurons
  • 2008
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 6:3, s. 538-551
  • Tidskriftsartikel (refereegranskat)abstract
    • Insulin and related peptides play important and conserved functions in growth and metabolism. Although Drosophila has proved useful for the genetic analysis of insulin functions, little is known about the transcription factors and cell lineages involved in insulin production. Within the embryonic central nervous system, the MP2 neuroblast divides once to generate a dMP2 neuron that initially functions as a pioneer, guiding the axons of other later-born embryonic neurons. Later during development, dMP2 neurons in anterior segments undergo apoptosis but their posterior counterparts persist. We show here that surviving posterior dMP2 neurons no longer function in axonal scaffolding but differentiate into neuroendocrine cells that express insulin-like peptide 7 (Ilp7) and innervate the hindgut. We find that the postmitotic transition from pioneer to insulin-producing neuron is a multistep process requiring retrograde bone morphogenetic protein (BMP) signalling and four transcription factors: Abdominal-B, Hb9, Fork Head, and Dimmed. These five inputs contribute in a partially overlapping manner to combinatorial codes for dMP2 apoptosis, survival, and insulinergic differentiation. Ectopic reconstitution of this code is sufficient to activate Ilp7 expression in other postmitotic neurons. These studies reveal striking similarities between the transcription factors regulating insulin expression in insect neurons and mammalian pancreatic β-cells. © 2008 Miguel-Aliaga et al.
  •  
3.
  • Miguel-Aliaga, Irene, et al. (författare)
  • Programmed cell death in the nervous system-a programmed cell fate?
  • 2009
  • Ingår i: CURRENT OPINION IN NEUROBIOLOGY. - : Elsevier BV. - 0959-4388. ; 19:2, s. 127-133
  • Forskningsöversikt (refereegranskat)abstract
    • Studies of developmental cell death in the nervous system have revealed two different modes of programmed cell death (PCD). One results from competition for target-derived trophic factors and leads to the stochastic removal of neurons and/or glia. A second, hard-wired form of PCD involves the lineage-specific, stereotypical death of identifiable neurons, glia or undifferentiated cells. Although traditionally associated with invertebrates, this programmed PCD can also occur in vertebrates. Recent studies have shed light on its genetic control and have revealed that activation of the apoptotic machinery can be under the same complex, combinatorial control as the expression of terminal differentiation genes. This review will highlight these findings and will suggest why such complex control evolved.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy