SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Millqvist Fureby Anna) srt2:(2020-2024)"

Sökning: WFRF:(Millqvist Fureby Anna) > (2020-2024)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, I. M., et al. (författare)
  • Particle morphology and rehydration properties of spray-dried microgels and fractal aggregates with varying fractions of native milk serum proteins
  • 2021
  • Ingår i: International Dairy Journal. - : Elsevier Ltd. - 0958-6946 .- 1879-0143. ; 112
  • Tidskriftsartikel (refereegranskat)abstract
    • To keep their functional properties, it is crucial that protein aggregates maintain their structure after spray drying and that the powders can be fully rehydrated. In this study, microgels and fractal aggregates were prepared by heating a mixture of milk serum protein concentrate and lactose (40/60; %, w/w) at 85 °C for 15 min by varying the pH. Various fractions of native proteins were added to the systems prior to spray drying. This study showed that microgels and fractal aggregates kept their structure after spray drying and reconstitution. The particle morphology could be correlated to the stiffness of the interface of the feed droplet. The forced imbibition rate showed a negative correlation with increasing amount of aggregated proteins in the powders that seems to be a result of denatured/aggregated proteins present at the surface. These findings are of importance for the formulation of spray-dried powders with improved rehydration characteristics. © 2020 The Author(s)
  •  
2.
  • Badal Tejedor, Maria, et al. (författare)
  • Freeze-dried cake structural and physical heterogeneity in relation to freeze-drying cycle parameters
  • 2020
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier B.V.. - 0378-5173 .- 1873-3476. ; 590
  • Tidskriftsartikel (refereegranskat)abstract
    • Freeze-drying is the preferred method to manufacture proteins in their solid state thus the understanding of the relationship between cycle parameters and cake properties remains of great interest. The present study aims to investigate the influence of the freezing conditions in the material properties at different layers throughout the dried structure, in the presence and absence of a protein. Placebo and protein formulations were dried applying different cooling rates: slow, fast and fast cooling with annealing. Non-uniform visual cake appearance, different pore sizes and endothermic events for release of structural water were observed throughout the cake at different freezing rates indicating heterogeneous properties of the dried material likely due to heating gradients during freezing. However, annealing increased the crystallinity and eliminated material inhomogeneities across the cake. The crystalline phase was mainly comprised of δ and hemihydrate mannitol (MHH) distributed at different ratios and influenced by the presence of the protein. The undesired formation of MHH is associated to currently used freezing temperatures or amorphous to crystalline material ratios. Thus, the correlation between the freezing step parameters and resulting material structure is a step forward to provide a better understanding of the freeze-dried cake formation and product quality improvement. 
  •  
3.
  • Bai Palmkron, Shuai, et al. (författare)
  • Quantification of structures in freeze-dried materials using X-ray microtomography
  • 2023
  • Ingår i: Colloids and Surfaces A. - : Elsevier BV. - 0927-7757 .- 1873-4359. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure of a freeze-dried material is essential for its ability to preserve and protect biologics such as proteins, cells and other sensitive structures. The structure of a typical freeze-dried matrix can be described as pores surrounded by thin walls where the walls are the encapsulating material (for e.g. cells). The objective of this investigation is to evaluate X-ray microtomography (µCT) as a characterization method to quantifying the matrix of a freeze dried material, and compare it to scanning electron microscopy (SEM). The material consists of maltodextrin, freeze-dried below or above the glass transition temperature of the maximal freeze concentration (Tg′) and after applying annealing. The SEM images have high resolution and provide an excellent view of the sample. However, it is challenging to perform any image analysis and to ensure that a representative section is presented. The µCT images provide a rather uniform contrast between material and void, allowing for a simple grey-level thresholding when separating structure from the background. A robust image analysis procedure allows the results extracted from a representative sample volume to be evaluated. Further image analysis has been focused on understanding the thickness of the encapsulating structures by estimations of volume-weighted averages of inscribed spheres within the walls. The results show two types of structures: A large pore structure of around 20–100 µm separated by thin walls around 2–3 µm thick, and a finer structure consisting of smaller pockets of air (< 10 µm) packed in a honeycomb like structure. The structures of the samples dried below and above Tg′ have smaller and thinner structures, while material dried after annealing has larger and thicker structures. The structures display comparably small differences between the different drying protocols despite the quite different drying conditions.
  •  
4.
  • Bogdanova, Ekaterina, et al. (författare)
  • Hydration enthalpies of amorphous sucrose, trehalose and maltodextrins and their relationship with heat capacities.
  • 2021
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 23:26, s. 14433-14448
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms of glass transitions and the behavior of small solute molecules in a glassy matrix are some of the most important topics of modern thermodynamics. Water plays an important role in the physical and chemical stability of lyophilized biologics formulations, in which glassy carbohydrates act as cryoprotectants and stabilizers. In this study, sorption calorimetry was used for simultaneous measurements of water activity and the enthalpy of water sorption by amorphous sucrose, trehalose and maltodextrins. Moreover, the heat capacity of these carbohydrates in mixtures with water was measured by DSC in a broad range of water contents. The hydration enthalpies of glassy sucrose, trehalose and maltodextrins are exothermic, and the enthalpy change of water-induced isothermal glass transitions is higher for small molecules. The partial molar enthalpy of mixing of water in slow experiments is about -18 kJ mol-1, but less exothermic in the case of small molecules at fast hydration scan rates. By measuring the heat capacities of disaccharides and maltodextrins as a function of water content, we separated the contributions of carbohydrates and water to the total heat capacities of the mixtures. The combination of these data allowed testing of thermodynamic models describing the hydration-induced glass transitions. The heat capacity changes calculated by the fitting of the hydration enthalpy data for disaccharides are in good agreement with the heat capacity data obtained by DSC, while for maltodextrins, the effect of sub-Tg transitions should be taken into account. Combining the data obtained by different techniques, we found a distinct difference in the behavior of water in glassy polymers compared to that in glassy disaccharides. By understanding the behavior of water in glassy carbohydrates, these results can be used to improve the design of freeze-dried formulations of proteins and probiotics.
  •  
5.
  • Bogdanova, Ekaterina, et al. (författare)
  • Influence of Cooling Rate on Ice Crystallization and Melting in Sucrose-Water System
  • 2022
  • Ingår i: Journal of Pharmaceutical Sciences. - : Elsevier B.V.. - 0022-3549 .- 1520-6017. ; 111:7, s. 2030-2037
  • Tidskriftsartikel (refereegranskat)abstract
    • The ice crystallization and melting in systems where the equilibrium state is difficult to reach is one of the growing areas in pharmaceutical freeze-drying research. The quality of the final freeze-dried product depends on the parameters of the cooling step, which affect the ice nucleation and growth. In this paper, we present a DSC study of ice crystallization and melting in a sucrose-water system. Using two different types of thermal cycles, we examine the influence of cooling and heating rates on the thermal behavior of sucrose-water solutions with water contents between 50 and 100 wt%. The DSC results show that low cooling rates provide crystallization at higher temperatures and lead to lower amount of non-freezing water. Consequently, the glass transition and ice melting properties observed upon heating depend on the cooling conditions in the preceding step. Based on the experimental results, we investigate the reasons for the existence of the two steps on DSC heating curves in sucrose-water systems: the glass transition step and the onset of ice melting. We show that diffusion of water can be the limiting factor for ice growth and melting in the sucrose-water system when the amorphous phase is in a liquid state. In particular, when the diffusion coefficient drops below 10−14 m2/sec, the ice crystals growth or melting becomes strongly suppressed even above the glass transition temperature. Understanding the diffusion limitations in the sucrose-water system can be used for the optimization of the freeze-drying protocols for proteins and probiotics. © 2022 The Authors
  •  
6.
  • Bogdanova, Ekaterina, et al. (författare)
  • Lysozyme-Sucrose Interactions in the Solid State : Glass Transition, Denaturation, and the Effect of Residual Water
  • 2023
  • Ingår i: Molecular Pharmaceutics. - : American Chemical Society. - 1543-8384 .- 1543-8392. ; 20:9, s. 4664-
  • Tidskriftsartikel (refereegranskat)abstract
    • The freeze-drying of proteins, along with excipients, offers a solution for increasing the shelf-life of protein pharmaceuticals. Using differential scanning calorimetry, thermogravimetric analysis, sorption calorimetry, and synchrotron small-angle X-ray scattering (SAXS), we have characterized the properties at low (re)hydration levels of the protein lysozyme, which was freeze-dried together with the excipient sucrose. We observe that the residual moisture content in these samples increases with the addition of lysozyme. This results from an increase in equilibrium water content with lysozyme concentration at constant water activity. Furthermore, we also observed an increase in the glass transition temperature (Tg) of the mixtures with increasing lysozyme concentration. Analysis of the heat capacity step of the mixtures indicates that lysozyme does not participate in the glass transition of the sucrose matrix; as a result, the observed increase in the Tg of the mixtures is the consequence of the confinement of the amorphous sucrose domains in the interstitial space between the lysozyme molecules. Sorption calorimetry experiments demonstrate that the hydration behavior of this formulation is similar to that of the pure amorphous sucrose, while the presence of lysozyme only shifts the sucrose transitions. SAXS analysis of amorphous lysozyme-sucrose mixtures and unfolding of lysozyme in this environment show that prior to unfolding, the size and shape of lysozyme in a solid sucrose matrix are consistent with its native state in an aqueous solution. The results obtained from our study will provide a better understanding of the low hydration behavior of protein-excipient mixtures and support the improved formulation of biologics. © 2023 The Authors. 
  •  
7.
  • Gidlöf, Zandra, et al. (författare)
  • Utilising phase diagram to understand barley starch microsphere preparation in an aqueous two-phase system
  • 2023
  • Ingår i: Colloids and Surfaces A. - : Elsevier BV. - 0927-7757 .- 1873-4359. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, a waxy barley starch-PEG aqueous two-phase system (ATPS) phase diagram was constructed, and starch microsphere preparation was explored at different phase diagram positions. The aim was to investigate starch-PEG ATPS phase behaviour and relate this to starch crystallisation and microsphere formation. The hypothesis was that phase diagram position would influence the starch microsphere preparation and the properties of the microspheres. The microsphere formation process was investigated with regard to microsphere development and starch crystallisation kinetics. Microsphere physicochemical properties and their development during different stages of the preparation were studied by examining freshly produced, freeze-dried, and redispersed microspheres. Enzymatic hydrolysis of redispersed microspheres was also investigated. It was possible to produce microspheres from different positions in the phase diagram using 24 h incubation at 25 °C. However, the operational area for the used production conditions was relatively small compared to the biphasic region of the phase diagram. The main findings were that the starch-PEG ATPS phase behaviour can affect the rate of microsphere formation and particle size, but the additional properties of the dried and redispersed microspheres did not differ to a considerable extent. Thus, we have identified a robust production space where production parameters such as time to obtain microspheres can be considerably influenced by the ATPS system phase diagram position.
  •  
8.
  • Martínez, Clàudia Sabaté, et al. (författare)
  • Examination of the Protein Drug Supply Chain in a Swedish University Hospital : Focus on Handling Risks and Mitigation Measures
  • 2023
  • Ingår i: Journal of Pharmaceutical Sciences. - : Elsevier. - 0022-3549 .- 1520-6017. ; 112:11, s. 2799-2810
  • Tidskriftsartikel (refereegranskat)abstract
    • Protein drugs, such as monoclonal antibodies, have proved successful in treating cancer and immune system diseases. The structural complexity of these molecules requires careful handling to ensure integrity and stability of the drug. In this study, a failure mode and effects analysis was performed based on a Gemba Walk method in a Swedish University Hospital. The Gemba Walk is focused on pharmacists observing the actual supply process steps from distributor, pharmacy cleanroom to patient administration. Relevant protein drugs are chosen based on sales statistics within the hospital and the corresponding wards were observed. Further is the Double Diamond design method used to identify major risks and deliver mitigation strategies. The study identified potential stress factors such as temperature, shock by impact, shaking, vibration and light exposure. There were also risks associated with porters’ and healthcare professionals’ lack of awareness and access to information. These risk factors may cause loss of efficacy and quality of the protein drug, potentially leading to patient safety concerns. In this study, a simulation is also performed to list measures that theoretically should be in place to ensure the quality of the protein drug, for example validated and protocol-based compounding in cleanroom, training and validated transports.
  •  
9.
  • Osanloo, Daniel, et al. (författare)
  • Effects of drying methods on physical properties and morphology of trehalose/mannitol mixtures
  • 2023
  • Ingår i: Drying Technology. - : Taylor and Francis Ltd.. - 0737-3937 .- 1532-2300. ; 41:4, s. 503-522
  • Tidskriftsartikel (refereegranskat)abstract
    • Solid-state properties of dried protein formulations are important for stability and functionality of the product. This study investigates how different drying technologies (freeze-drying with and without annealing, spray drying and spray-freeze drying) affect the structure and solid-state properties of a set of matrix formulations composed of trehalose (glass former) and mannitol (scaffolding agent) in five ratios. The dried materials were characterized using differential scanning calorimetry, thermogravimetric analysis, x-ray diffraction and scanning electron microscopy. The morphology of the dried matrix is determined by the drying technology and the composition. In all mixtures, mannitol partially dissolved in the amorphous trehalose, resulting in reduced glass transition temperature. At least 50% mannitol is required to achieve a scaffolding effect through crystallized mannitol. At 25% mannitol poor structural stability is obtained regardless of drying technology. Despite the vast differences in drying kinetics, all drying technologies resulted in similar amorphous content in the dried material. © 2022 The Author(s). 
  •  
10.
  • Osanloo, Daniel, et al. (författare)
  • Formulation factors affecting foam properties during vacuum foam-drying
  • 2024
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier B.V.. - 0378-5173 .- 1873-3476. ; 652
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper explores how vacuum foam-drying of a protein is influenced by formulation parameters by investigating the foam structure, physical properties of the foam, and the stability of the protein. Recombinant human bile salt-stimulated lipase was used as a model of a protein drug. The stability of the lipase was evaluated through activity measurements. Two disaccharides (sucrose and trehalose), strongly tending to an amorphous form, were used as matrix formers, and the physical properties were assessed through residual water content, glass transition temperature, and crystalline state. Moreover, some formulations included surfactants with different sizes and structures of the head group. The alkyl chain length was kept constant to only investigate the impact of the surfactant head group, in the presence of the lipase, on the foamability and surface coverage of the lipase. The study demonstrated that the lipase allowed for a dry, solid foam with a foam overrun of up to 2600 %. The wall thickness of the dry, solid foam was estimated to be 20–50 µm. Clear differences between sucrose and trehalose as matrix former were identified. The lipase showed no tendency to lose activity because of the drying and rehydration, despite a proportion of the lipase covering the surfaces of the dry material. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy