SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Milone C.) srt2:(2020-2024)"

Sökning: WFRF:(Milone C.) > (2020-2024)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Jimenez, Antonio M. Jimenez, et al. (författare)
  • An adapted European LeukemiaNet genetic risk stratification for acute myeloid leukemia patients undergoing allogeneic hematopoietic cell transplant. A CIBMTR analysis
  • 2021
  • Ingår i: Bone Marrow Transplantation. - : Springer Nature. - 0268-3369 .- 1476-5365. ; 56:12, s. 3068-3077
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytogenetic and molecular abnormalities are known to influence post-transplant outcomes in acute myeloid leukemia (AML) but data assessing the prognostic value of combined genetic models in the HCT setting are limited. We developed an adapted European LeukemiaNet (aELN) risk classification based on available genetic data reported to the Center for International Blood and Marrow Transplant Research, to predict post-transplant outcomes in 2289 adult AML patients transplanted in first remission, between 2013 and 2017. Patients were stratified according to aELN into three groups: favorable (Fav, N = 181), intermediate (IM, N = 1185), and adverse (Adv, N = 923). Univariate analysis demonstrated significant differences in 2-year overall survival (OS) (Fav: 67.7%, IM: 64.9% and Adv: 53.9%; p < 0.001); disease-free survival (DFS) (Fav: 57.8%, IM: 55.5% and Adv: 45.3; p < 0.001) and relapse (Fav: 28%, IM: 27.5% and Adv: 37.5%; p < 0.001). Multivariate analysis (MVA) revealed no differences in outcomes between the Fav and IM groups, thus they were combined. On MVA, patients in the Adv risk group had the highest risk of relapse (HR 1.47 p <= 0.001) and inferior DFS (HR 1.35 p < 0.001) and OS (HR 1.39 p < 0.001), even using myeloablative conditioning or in those without the pre-HCT measurable-residual disease. Novel approaches to mitigate relapse in this high-risk group are urgently needed.
  •  
3.
  • Lacchin, E., et al. (författare)
  • Multiple stellar population mass loss in massive Galactic globular clusters
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361. ; 681
  • Tidskriftsartikel (refereegranskat)abstract
    • The degree of mass loss, that is the fraction of stars lost by globular clusters, and specifically by their different populations, is still poorly understood. Many scenarios of the formation of multiple stellar populations, especially the ones involving self-enrichment, assume that the first generation (FG) was more massive at birth than now in order to reproduce the current mass of the second generation (SG). This assumption implies that, during their long-Term evolution, clusters lose around 90% of the FG. We tested whether such strong mass loss could take place in a massive globular cluster orbiting the Milky Way at 4 kpc from the centre that is composed of two generations. We performed a series of N-body simulations for 12 Gyr to probe the parameter space of internal cluster properties. We derive that, for an extended FG and a low-mass SG, the cluster loses almost 98% of its initial FG mass and the cluster mass can be as much as 20 times lower after a Hubble time. Furthermore, under these conditions, the derived fraction of SG stars, fenriched, falls in the range occupied by observed clusters of similar mass (∼0.6-0.8). In general, the parameters that affect the highest degree of mass loss are the presence or absence of primordial segregation, the depth of the central potential, W0FG, the initial mass of the SG, MSGini, and the initial half-mass radius of the SG, rhSG. Higher MSGini have not been found to imply higher final fenriched due to the deeper cluster potential well which slows down mass loss.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy