SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moens Lotte N.) srt2:(2015-2019)"

Sökning: WFRF:(Moens Lotte N.) > (2015-2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brodin, Bertha A., et al. (författare)
  • Drug sensitivity testing on patient-derived sarcoma cells predicts patient response to treatment and identifies c-Sarc inhibitors as active drugs for translocation sarcomas
  • 2019
  • Ingår i: British Journal of Cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 120:4, s. 435-443
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Heterogeneity and low incidence comprise the biggest challenge in sarcoma diagnosis and treatment. Chemotherapy, although efficient for some sarcoma subtypes, generally results in poor clinical responses and is mostly recommended for advanced disease. Specific genomic aberrations have been identified in some sarcoma subtypes but few of them can be targeted with approved drugs. METHODS: We cultured and characterised patient-derived sarcoma cells and evaluated their sensitivity to 525 anti-cancer agents including both approved and non-approved drugs. In total, 14 sarcomas and 5 healthy mesenchymal primary cell cultures were studied. The sarcoma biopsies and derived cells were characterised by gene panel sequencing, cancer driver gene expression and by detecting specific fusion oncoproteins in situ in sarcomas with translocations. RESULTS: Soft tissue sarcoma cultures were established from patient biopsies with a success rate of 58%. The genomic profile and drug sensitivity testing on these samples helped to identify targeted inhibitors active on sarcomas. The cSrc inhibitor Dasatinib was identified as an active drug in sarcomas carrying chromosomal translocations. The drug sensitivity of the patient sarcoma cells ex vivo correlated with the response to the former treatment of the patient. CONCLUSIONS: Our results show that patient-derived sarcoma cells cultured in vitro are relevant and practical models for genotypic and phenotypic screens aiming to identify efficient drugs to treat sarcoma patients with poor treatment options.
  •  
2.
  • Lundin, Karin E, et al. (författare)
  • Susceptibility to infections, without concomitant hyper-IgE, reported in 1976, is caused by hypomorphic mutation in the phosphoglucomutase 3 (PGM3) gene
  • 2015
  • Ingår i: Clinical Immunology. - : Elsevier. - 1521-6616 .- 1521-7035. ; 161:2, s. 366-372
  • Tidskriftsartikel (refereegranskat)abstract
    • Phosphoglucomutase 3 (PGM3) is an enzyme converting N-acetyl-glucosamine-6-phosphate to N-acetylglucosamine-l-phosphate, a precursor important for glycosylation. Mutations in the PGM3 gene have recently been identified as the cause of novel primary immunodeficiency with a hyper-IgE like syndrome. Here we report the occurrence of a homozygous mutation in the PGM3 gene in a family with immunodeficient children, described already in 1976. DNA from two of the immunodeficient siblings was sequenced and shown to encode the same homozygous missense mutation, causing a destabilized protein with reduced enzymatic capacity. Affected individuals were highly prone to infections, but lack the developmental defects in the nervous and skeletal systems, reported in other families. Moreover, normal IgE levels were found. Thus, belonging to the expanding group of congenital glycosylation defects, PGM3 deficiency is characterized by immunodeficiency, with or without increased IgE levels, and with variable forms of developmental defects affecting other organ systems.
  •  
3.
  • McGinn, Steven, et al. (författare)
  • New Technologies for DNA analysis-A review of the READNA Project.
  • 2016
  • Ingår i: New Biotechnology. - : Elsevier BV. - 1876-4347 .- 1871-6784.
  • Forskningsöversikt (refereegranskat)abstract
    • The REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 4 1/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and developed a huge body of insights into nucleic acid analysis, ranging from improvements and implementation of current technologies to the most promising sequencing technologies that constitute a 3(rd) and 4(th) generation of sequencing methods with nanopores and in situ sequencing, respectively.
  •  
4.
  •  
5.
  • Moens, Lotte N. J., et al. (författare)
  • HaloPlex Targeted Resequencing for Mutation Detection in Clinical Formalin-Fixed, Paraffin-Embedded Tumor Samples
  • 2015
  • Ingår i: Journal of Molecular Diagnostics. - : Elsevier BV. - 1525-1578 .- 1943-7811. ; 17:6, s. 729-739
  • Tidskriftsartikel (refereegranskat)abstract
    • In recent years, the advent of massively parallel next-generation sequencing technologies has enabled substantial advances in the study of human diseases. Combined with targeted DNA enrichment methods, high sequence coverage can be obtained for different genes simultaneously at a reduced cost per sample, creating unique opportunities for clinical cancer diagnostics. However, the formalin-fixed, paraffin-embedded (FFPE) process of tissue samples, routinely used in pathology departments, results in DNA fragmentation and nucleotide modifications that introduce a number of technical challenges for downstream biomotecular analyses. We evaluated the HaloPlex target enrichment system for somatic mutation detection in 80 tissue fractions derived from 20 clinical cancer cases with paired tumor and normal tissue available in both FFPE and fresh-frozen format. Several modifications to the standard method were introduced, including a reduced target fragment Length and two strand capturing. We found that FFPE material can be used for HaloPlex-based target enrichment and next-generation sequencing, even when starting from small amounts of DNA. By specifically capturing both strands for each target fragment, we were able to reduce the number of false-positive errors caused by FFPE-induced artifacts and Lower the detection limit for somatic mutations. We believe that the HaloPlex method presented here will be broadly applicable as a tool for somatic mutation detection in clinical cancer settings.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5
Typ av publikation
tidskriftsartikel (4)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (4)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Nilsson, Mats (3)
Moens, Lotte N. (2)
Micke, Patrick (2)
Moens, Lotte (2)
La Fleur, Linnea (2)
Botling, Johan (2)
visa fler...
Kallioniemi, Olli (1)
Sundström, Magnus (1)
Christensson, Birger (1)
Nilsson, M (1)
Lehrach, Hans (1)
Willcocks, Spike (1)
Tegenfeldt, Jonas (1)
Fritzsche, Joachim, ... (1)
Persson, Fredrik, 19 ... (1)
Kaye, Jane (1)
Brosjö, Otte (1)
Wejde, Johan (1)
Kristensen, Anders (1)
Ke, Rongqin (1)
Freitag, Camilla (1)
Franke, Andre (1)
Mignardi, Marco (1)
Dekker, Cees (1)
Sundström, M. (1)
Gullberg, Mats (1)
Gut, Ivo G. (1)
Gut, Marta (1)
Bergfors, M (1)
Lidbrink, Elisabet (1)
Tost, Jörg (1)
Smith, C. I. Edvard (1)
Norlin, Anna-Carin (1)
Lundin, Karin E. (1)
Ljungström, Viktor (1)
Brookes, Anthony J. (1)
Fredriksson, Simon (1)
Stenmark, Stephan (1)
Heath, Simon (1)
El-Sagheer, Afaf (1)
Brodin, Bertha A. (1)
Wennerberg, Krister (1)
Potdar, Swapnil (1)
Wilson, Jennifer N. (1)
Ma, Limin (1)
Hesla, Asle (1)
Porovic, Edvin (1)
Bernhardsson, Edvin (1)
Papakonstantinou, An ... (1)
Bauer, Henrik (1)
visa färre...
Lärosäte
Uppsala universitet (5)
Stockholms universitet (3)
Karolinska Institutet (2)
Göteborgs universitet (1)
Umeå universitet (1)
Lunds universitet (1)
visa fler...
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (5)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (5)
Naturvetenskap (1)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy