SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mohn J.) srt2:(2020-2024)"

Sökning: WFRF:(Mohn J.) > (2020-2024)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Morris, A. M., et al. (författare)
  • Evidence for low‐pressure crustal anatexis during the northeast atlantic break‐up
  • 2024
  • Ingår i: Geochemistry Geophysics Geosystems. - : American Geophysical Union (AGU). - 1525-2027. ; 25:7
  • Tidskriftsartikel (refereegranskat)abstract
    • While basaltic volcanism is dominant during rifting and continental breakup, felsic magmatism may be a significant component of some rift margins. During International Ocean Discovery Program (IODP) Expedition 396 on the continental margin of Norway, a graphite-garnet-cordierite bearing dacitic unit (the Mimir dacite) was recovered in two holes within early Eocene sediments on Mimir High (Site U1570), a marginal high on the Vøring Transform Margin. Here, we present a comprehensive textural, petrological, and geochemical study of the Mimir dacite in order to assess its origin and discuss the geodynamic implications. The major mineral phases (garnet, cordierite, quartz, plagioclase, alkali feldspar) are hosted in a fresh rhyolitic, vesicular, glassy matrix that is locally mingled with sediments. The major element chemistry of garnet and cordierite, the presence of zircon inclusions with inherited cores, and thermobarometric calculations all support an upper crustal metapelitic origin. While most magma-rich margin models favor crustal anatexis in the lower crust, thermobarometric calculations performed here show that the Mimir dacite was produced at upper-crustal depths (<5 kbar, 18 km depth) and high temperature (750–800°C) with up to 3 wt% water content. In situ U-Pb analyses on zircon inclusions give a magmatic crystallization age of 54.6 ± 1.1 Ma, consistent with emplacement that post-dates the Paleocene-Eocene Thermal Maximum. Our results suggest that the opening of the Northeast Atlantic was associated with a phase of low-pressure, high-temperature crustal anatexis preceding the main phase of magmatism.
  •  
2.
  •  
3.
  • Weaver, P. P.E., et al. (författare)
  • Assessing plume impacts caused by polymetallic nodule mining vehicles
  • 2022
  • Ingår i: Marine Policy. - 0308-597X. ; 139
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep-sea mining may be just a few years away and yet society is struggling to assess the positive aspects, such as increasing the supply of metals for battery production to fuel the green revolution, versus the potentially large environmental impacts. Mining of polymetallic (manganese) nodules from the deep ocean is likely to be the first mineral resource targeted and will involve direct impacts to hundreds of km2 of seabed per mine per year. However, the mining activity will also cause the generation of large sediment plumes that will spread away from the mine site and have both immediate and long-term effects over much wider areas. We discuss what the impacts of plumes generated near the seabed by mining vehicles may be and how they might be measured in such challenging environments. Several different mining vehicles are under development around the world and depending on their design some may create larger plumes than others. We discuss how these vehicles could be compared so that better engineering designs could be selected and to encourage innovation in dealing with plume generation and spread. These considerations will aid the International Seabed Authority (ISA) that has the task of regulating mining activities in much of the deep sea in its commitment to promote the Best Available Technology (BAT) and Best Environmental Practice (BEP).
  •  
4.
  • Yu, Longfei, et al. (författare)
  • What can we learn from N2O isotope data? - Analytics, processes and modelling
  • 2020
  • Ingår i: Rapid Communications in Mass Spectrometry. - : Wiley. - 0951-4198 .- 1097-0231. ; 34:20
  • Tidskriftsartikel (refereegranskat)abstract
    • The isotopic composition of nitrous oxide (N2O) provides useful information for evaluating N2O sources and budgets. Due to the co-occurrence of multiple N2O transformation pathways, it is, however, challenging to use isotopic information to quantify the contribution of distinct processes across variable spatiotemporal scales. Here, we present an overview of recent progress in N2O isotopic studies and provide suggestions for future research, mainly focusing on: analytical techniques; production and consumption processes; and interpretation and modelling approaches. Comparing isotope-ratio mass spectrometry (IRMS) with laser absorption spectroscopy (LAS), we conclude that IRMS is a precise technique for laboratory analysis of N2O isotopes, while LAS is more suitable forin situ/inline studies and offers advantages for site-specific analyses. When reviewing the link between the N2O isotopic composition and underlying mechanisms/processes, we find that, at the molecular scale, the specific enzymes and mechanisms involved determine isotopic fractionation effects. In contrast, at plot-to-global scales, mixing of N2O derived from different processes and their isotopic variability must be considered. We also find that dual isotope plots are effective for semi-quantitative attribution of co-occurring N2O production and reduction processes. More recently, process-based N2O isotopic models have been developed for natural abundance and(15)N-tracing studies, and have been shown to be effective, particularly for data with adequate temporal resolution. Despite the significant progress made over the last decade, there is still great need and potential for future work, including development of analytical techniques, reference materials and inter-laboratory comparisons, further exploration of N2O formation and destruction mechanisms, more observations across scales, and design and validation of interpretation and modelling approaches. Synthesizing all these efforts, we are confident that the N2O isotope community will continue to advance our understanding of N2O transformation processes in all spheres of the Earth, and in turn to gain improved constraints on regional and global budgets.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy