SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Molinari D.) srt2:(2010-2014)"

Sökning: WFRF:(Molinari D.) > (2010-2014)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Acharya, B. S., et al. (författare)
  • Introducing the CTA concept
  • 2013
  • Ingår i: Astroparticle physics. - : Elsevier BV. - 0927-6505 .- 1873-2852. ; 43, s. 3-18
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Actis, M., et al. (författare)
  • Design concepts for the Cherenkov Telescope Array CTA : an advanced facility for ground-based high-energy gamma-ray astronomy
  • 2011
  • Ingår i: Experimental astronomy. - : Springer. - 0922-6435 .- 1572-9508. ; 32:3, s. 193-316
  • Tidskriftsartikel (refereegranskat)abstract
    • Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
  •  
3.
  • Griffin, M. J., et al. (författare)
  • The Herschel-SPIRE instrument and its in-flight performance
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L3-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 mu m, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 mu m (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6'. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2.
  •  
4.
  • Motte, F., et al. (författare)
  • Initial highlights of the HOBYS key program, the Herschel imaging survey of OB young stellar objects
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L77-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the initial highlights of the HOBYS key program, which are based on Herschel images of the Rosette molecular complex and maps of the RCW120 H II region. Using both SPIRE at 250/350/500 mu m and PACS at 70/160 mu m or 100/160 mu m, the HOBYS survey provides an unbiased and complete census of intermediate-to high-mass young stellar objects, some of which are not detected by Spitzer. Key core properties, such as bolometric luminosity and mass (as derived from spectral energy distributions), are used to constrain their evolutionary stages. We identify a handful of high-mass prestellar cores and show that their lifetimes could be shorter in the Rosette molecular complex than in nearby low-mass star-forming regions. We also quantify the impact of expanding H II regions on the star formation process acting in both Rosette and RCW 120.
  •  
5.
  • Men'shchikov, A., et al. (författare)
  • Filamentary structures and compact objects in the Aquila and Polaris clouds observed by Herschel
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L103-
  • Tidskriftsartikel (refereegranskat)abstract
    • Our PACS and SPIRE images of the Aquila Rift and part of the Polaris Flare regions, taken during the science demonstration phase of Herschel discovered fascinating, omnipresent filamentary structures that appear to be physically related to compact cores. We briefly describe a new multi-scale, multi-wavelength source extraction method used to detect objects and measure their parameters in our Herschel images. All of the extracted starless cores (541 in Aquila and 302 in Polaris) appear to form in the long and very narrow filaments. With its combination of the far-IR resolution and sensitivity, Herschel directly reveals the filaments in which the dense cores are embedded; the filaments are resolved and have deconvolved widths of similar to 35 '' in Aquila and similar to 59 '' in Polaris (similar to 9000 AU in both regions). Our first results of observations with Herschel enable us to suggest that in general dense cores may originate in a process of fragmentation of complex networks of long, thin filaments, likely formed as a result of an interplay between gravity, interstellar turbulence, and magnetic fields. To unravel the roles of the processes, one has to obtain additional kinematic and polarization information; these follow-up observations are planned.
  •  
6.
  • Schneider, N., et al. (författare)
  • The Herschel view of star formation in the Rosette molecular cloud under the influence of NGC 2244
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L83-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Rosette molecular cloud is promoted as the archetype of a triggered star-formation site. This is mainly due to its morphology, because the central OB cluster NGC 2244 has blown a circular-shaped cavity into the cloud and the expanding H II-region now interacts with the cloud. Aims. Studying the spatial distribution of the different evolutionary states of all star-forming sites in Rosette and investigating possible gradients of the dust temperature will help to test the "triggered star-formation" scenario in Rosette. Methods. We use continuum data obtained with the PACS (70 and 160 mu m) and SPIRE instruments (250, 350, 500 mu m) of the Herschel telescope during the science demonstration phase of HOBYS. Results. Three-color images of Rosette impressively show how the molecular gas is heated by the radiative impact of the NGC 2244 cluster. A clear negative temperature gradient and a positive density gradient (running from the H II-region/molecular cloud interface into the cloud) are detected. Studying the spatial distribution of the most massive dense cores (size scale 0.05 to 0.3 pc), we find an age-sequence (from more evolved to younger) with increasing distance to the cluster NGC 2244. No clear gradient is found for the clump (size-scale up to 1 pc) distribution. Conclusions. The existence of temperature and density gradients and the observed age-sequence imply that star formation in Rosette may indeed be influenced by the radiative impact of the central NGC 2244 cluster. A more complete overview of the prestellar and protostellar population in Rosette is required to obtain a firmer result.
  •  
7.
  • Hennemann, M., et al. (författare)
  • Herschel observations of embedded protostellar clusters in the Rosette molecular cloud
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L84-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Herschel OB young stellar objects survey (HOBYS) has observed the Rosette molecular cloud, providing an unprecedented view of its star formation activity. These new far-infrared data reveal a population of compact young stellar objects whose physical properties we aim to characterise. We compiled a sample of protostars and their spectral energy distributions that covers the near-infrared to submillimetre wavelength range. These were used to constrain key properties in the protostellar evolution, bolometric luminosity, and envelope mass and to build an evolutionary diagram. Several clusters are distinguished including the cloud centre, the embedded clusters in the vicinity of luminous infrared sources, and the interaction region. The analysed protostellar population in Rosette ranges from 0.1 to about 15 M-circle dot with luminosities between 1 and 150 L-circle dot, which extends the evolutionary diagram from low-mass protostars into the high-mass regime. Some sources lack counterparts at near-to mid-infrared wavelengths, indicating extreme youth. The central cluster and the Phelps & Lada 7 cluster appear less evolved than the remainder of the analysed protostellar population. For the central cluster, we find indications that about 25% of the protostars classified as Class I from near-to mid-infrared data are actually candidate Class 0 objects. As a showcase for protostellar evolution, we analysed four protostars of low-to intermediate-mass in a single dense core, and they represent different evolutionary stages from Class 0 to Class I. Their mid-to far-infrared spectral slopes flatten towards the Class I stage, and the 160 to 70 mu m flux ratio is greatest for the presumed Class 0 source. This shows that the Herschel observations characterise the earliest stages of protostellar evolution in detail.
  •  
8.
  • Ward-Thompson, D., et al. (författare)
  • A Herschel study of the properties of starless cores in the Polaris Flare dark cloud region using PACS and SPIRE
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L92-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Polaris Flare cloud region contains a great deal of extended emission. It is at high declination and high Galactic latitude. It was previously seen strongly in IRAS Cirrus emission at 100 microns. We have detected it with both PACS and SPIRE on Herschel. We see filamentary and low-level structure. We identify the five densest cores within this structure. We present the results of a temperature, mass and density analysis of these cores. We compare their observed masses to their virial masses, and see that in all cases the observed masses lie close to the lower end of the range of estimated virial masses. Therefore, we cannot say whether they are gravitationally bound prestellar cores. Nevertheless, these are the best candidates to be potential prestellar cores in the Polaris cloud region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy