SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moll S) srt2:(2020-2024)"

Sökning: WFRF:(Moll S) > (2020-2024)

  • Resultat 1-10 av 46
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Schiller, D, et al. (författare)
  • The Human Affectome
  • 2024
  • Ingår i: Neuroscience and biobehavioral reviews. - 1873-7528. ; 158, s. 105450-
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  •  
4.
  • Fabian, ID, et al. (författare)
  • Travel burden and clinical presentation of retinoblastoma: analysis of 1024 patients from 43 African countries and 518 patients from 40 European countries
  • 2021
  • Ingår i: The British journal of ophthalmology. - : BMJ. - 1468-2079 .- 0007-1161. ; 105:10, s. 1435-1443
  • Tidskriftsartikel (refereegranskat)abstract
    • The travel distance from home to a treatment centre, which may impact the stage at diagnosis, has not been investigated for retinoblastoma, the most common childhood eye cancer. We aimed to investigate the travel burden and its impact on clinical presentation in a large sample of patients with retinoblastoma from Africa and Europe.MethodsA cross-sectional analysis including 518 treatment-naïve patients with retinoblastoma residing in 40 European countries and 1024 treatment-naïve patients with retinoblastoma residing in 43 African countries.ResultsCapture rate was 42.2% of expected patients from Africa and 108.8% from Europe. African patients were older (95% CI −12.4 to −5.4, p<0.001), had fewer cases of familial retinoblastoma (95% CI 2.0 to 5.3, p<0.001) and presented with more advanced disease (95% CI 6.0 to 9.8, p<0.001); 43.4% and 15.4% of Africans had extraocular retinoblastoma and distant metastasis at the time of diagnosis, respectively, compared to 2.9% and 1.0% of the Europeans. To reach a retinoblastoma centre, European patients travelled 421.8 km compared to Africans who travelled 185.7 km (p<0.001). On regression analysis, lower-national income level, African residence and older age (p<0.001), but not travel distance (p=0.19), were risk factors for advanced disease.ConclusionsFewer than half the expected number of patients with retinoblastoma presented to African referral centres in 2017, suggesting poor awareness or other barriers to access. Despite the relatively shorter distance travelled by African patients, they presented with later-stage disease. Health education about retinoblastoma is needed for carers and health workers in Africa in order to increase capture rate and promote early referral.
  •  
5.
  • Osborn, H. P., et al. (författare)
  • Uncovering the true periods of the young sub-Neptunes orbiting TOI-2076
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 664
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. TOI-2076 is a transiting three-planet system of sub-Neptunes orbiting a bright (G = 8.9 mag), young (340 +/- 80 Myr) K-type star. Although a validated planetary system, the orbits of the two outer planets were unconstrained as only two non-consecutive transits were seen in TESS photometry. This left 11 and 7 possible period aliases for each. Aims. To reveal the true orbits of these two long-period planets, precise photometry targeted on the highest-probability period aliases is required. Long-term monitoring of transits in multi-planet systems can also help constrain planetary masses through TTV measurements. Methods. We used the MonoTools package to determine which aliases to follow, and then performed space-based and ground-based photometric follow-up of TOI-2076 c and d with CHEOPS, SAINT-EX, and LCO telescopes. Results. CHEOPS observations revealed a clear detection for TOI-2076 c at P = 21.01538(-0.00074)(+0.00084) d, and allowed us to rule out three of the most likely period aliases for TOI-2076 d. Ground-based photometry further enabled us to rule out remaining aliases and confirm the P = 35.12537 +/- 0.00067 d alias. These observations also improved the radius precision of all three sub-Neptunes to 2.518 +/- 0.036, 3.497 +/- 0.043, and 3.232 +/- 0.063 R-circle plus. Our observations also revealed a clear anti-correlated TTV signal between planets b and c likely caused by their proximity to the 2:1 resonance, while planets c and d appear close to a 5:3 period commensurability, although model degeneracy meant we were unable to retrieve robust TTV masses. Their inflated radii, likely due to extended H-He atmospheres, combined with low insolation makes all three planets excellent candidates for future comparative transmission spectroscopy with JWST.
  •  
6.
  •  
7.
  • Psaridi, A., et al. (författare)
  • Discovery of two warm mini-Neptunes with contrasting densities orbiting the young K3V star TOI-815
  • 2024
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 685
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery and characterization of two warm mini-Neptunes transiting the K3V star TOI-815 in a K–M binary system. Analysis of its spectra and rotation period reveal the star to be young, with an age of 200+−400200 Myr. TOI-815b has a 11.2-day period and a radius of 2.94 ± 0.05 R+ with transits observed by TESS, CHEOPS, ASTEP, and LCOGT. The outer planet, TOI-815c, has a radius of 2.62 ± 0.10 R+, based on observations of three nonconsecutive transits with TESS; targeted CHEOPS photometry and radial velocity follow-up with ESPRESSO were required to confirm the 35-day period. ESPRESSO confirmed the planetary nature of both planets and measured masses of 7.6 ± 1.5 M+ (ρP = 1.64+−003331 g cm−3) and 23.5 ± 2.4 M+ (ρP = 7.2+−1110 g cm−3), respectively. Thus, the planets have very different masses, which is unusual for compact multi-planet systems. Moreover, our statistical analysis of mini-Neptunes orbiting FGK stars suggests that weakly irradiated planets tend to have higher bulk densities compared to those undergoing strong irradiation. This could be ascribed to their cooler atmospheres, which are more compressed and denser. Internal structure modeling of TOI-815b suggests it likely has a H-He atmosphere that constitutes a few percent of the total planet mass, or higher if the planet is assumed to have no water. In contrast, the measured mass and radius of TOI-815c can be explained without invoking any atmosphere, challenging planetary formation theories. Finally, we infer from our measurements that the star is viewed close to pole-on, which implies a spin-orbit misalignment at the 3σ level. This emphasizes the peculiarity of the system’s orbital architecture, and probably hints at an eventful dynamical history.
  •  
8.
  •  
9.
  • Barros, S. C. C., et al. (författare)
  • Detection of the tidal deformation of WASP-103b at 3σ with CHEOPS
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 657
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Ultra-short period planets undergo strong tidal interactions with their host star which lead to planet deformation and orbital tidal decay.Aims. WASP-103b is the exoplanet with the highest expected deformation signature in its transit light curve and one of the shortest expected spiral-in times. Measuring the tidal deformation of the planet would allow us to estimate the second degree fluid Love number and gain insight into the planet's internal structure. Moreover, measuring the tidal decay timescale would allow us to estimate the stellar tidal quality factor, which is key to constraining stellar physics.Methods. We obtained 12 transit light curves of WASP-103b with the CHaracterising ExOplanet Satellite (CHEOPS) to estimate the tidal deformation and tidal decay of this extreme system. We modelled the high-precision CHEOPS transit light curves together with systematic instrumental noise using multi-dimensional Gaussian process regression informed by a set of instrumental parameters. To model the tidal deformation, we used a parametrisation model which allowed us to determine the second degree fluid Love number of the planet. We combined our light curves with previously observed transits of WASP-103b with the Hubble Space Telescope (HST) and Spitzer to increase the signal-to-noise of the light curve and better distinguish the minute signal expected from the planetary deformation.Results. We estimate the radial Love number of WASP-103b to be h(f) = 1.59(-0.53)(+0.45). This is the first time that the tidal deformation is directly detected (at 3 sigma) from the transit light curve of an exoplanet. Combining the transit times derived from CHEOPS, HST, and Spitzer light curves with the other transit times available in the literature, we find no significant orbital period variation for WASP-103b. However, the data show a hint of an orbital period increase instead of a decrease, as is expected for tidal decay. This could be either due to a visual companion star if this star is bound, the Applegate effect, or a statistical artefact.Conclusions. The estimated Love number of WASP-103b is similar to Jupiter's. This will allow us to constrain the internal structure and composition of WASP-103b, which could provide clues on the inflation of hot Jupiters. Future observations with James Webb Space Telescope can better constrain the radial Love number of WASP-103b due to their high signal-to-noise and the smaller signature of limb darkening in the infrared. A longer time baseline is needed to constrain the tidal decay in this system.
  •  
10.
  • Garai, Z., et al. (författare)
  • Refined parameters of the HD 22946 planetary system and the true orbital period of planet d
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Multi-planet systems are important sources of information regarding the evolution of planets. However, the long-period planets in these systems often escape detection. These objects in particular may retain more of their primordial characteristics compared to close-in counterparts because of their increased distance from the host star. HD 22946 is a bright (G = 8.13 mag) late F-type star around which three transiting planets were identified via Transiting Exoplanet Survey Satellite (TESS) photometry, but the true orbital period of the outermost planet d was unknown until now. Aims. We aim to use the Characterising Exoplanet Satellite (CHEOPS) space telescope to uncover the true orbital period of HD 22946d and to refine the orbital and planetary properties of the system, especially the radii of the planets. Methods. We used the available TESS photometry of HD 22946 and observed several transits of the planets b, c, and d using CHEOPS. We identified two transits of planet d in the TESS photometry, calculated the most probable period aliases based on these data, and then scheduled CHEOPS observations. The photometric data were supplemented with ESPRESSO (Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations) radial velocity data. Finally, a combined model was fitted to the entire dataset in order to obtain final planetary and system parameters. Results. Based on the combined TESS and CHEOPS observations, we successfully determined the true orbital period of the planet d to be 47.42489 ± 0.00011 days, and derived precise radii of the planets in the system, namely 1.362 ± 0.040 R, 2.328 ± 0.039 R, and 2.607 ± 0.060 R for planets b, c, and d, respectively. Due to the low number of radial velocities, we were only able to determine 3σ upper limits for these respective planet masses, which are 13.71 M, 9.72 M, and 26.57 M. We estimated that another 48 ESPRESSO radial velocities are needed to measure the predicted masses of all planets in HD 22946. We also derived stellar parameters for the host star. Conclusions. Planet c around HD 22946 appears to be a promising target for future atmospheric characterisation via transmission spectroscopy. We can also conclude that planet d, as a warm sub-Neptune, is very interesting because there are only a few similar confirmed exoplanets to date. Such objects are worth investigating in the near future, for example in terms of their composition and internal structure.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 46
Typ av publikation
tidskriftsartikel (46)
Typ av innehåll
refereegranskat (44)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Davies, M. B. (11)
Moll, K (9)
Lendl, M. (9)
Barros, S.C.C. (8)
Fortier, A. (8)
Demory, B.O. (8)
visa fler...
Wilson, T.G. (8)
Alibert, Y. (8)
Alonso, R. (8)
Bárczy, T. (8)
Baumjohann, W. (8)
Beck, T. (8)
Benz, W. (8)
Bonfils, X. (8)
Broeg, C. (8)
Charnoz, S. (8)
Deleuil, M. (8)
Delrez, L. (8)
Ehrenreich, D. (8)
Fossati, L. (8)
Fridlund, Malcolm, 1 ... (8)
Gandolfi, D. (8)
Gudel, M. (8)
Hoyer, S. (8)
Laskar, J. (8)
Magrin, D. (8)
Svensson, M. (7)
Sousa, S.G. (7)
Bonfanti, A. (7)
Borsato, L. (7)
Pagano, I. (7)
Peter, G. (7)
Queloz, D. (7)
Rando, N. (7)
Rauer, H. (7)
Ribas, I. (7)
Simon, A.E. (7)
Cabrera, J (7)
Palle, E. (7)
Norrby-Teglund, A (6)
Collier Cameron, A. (6)
Hooton, M.J. (6)
Smith, A. M.S. (6)
Billot, N. (6)
Ottensamer, R. (6)
Santos, N. C. (6)
Segransan, D. (6)
Udry, S. (6)
Van Grootel, V. (6)
Anglada, G. (6)
visa färre...
Lärosäte
Karolinska Institutet (28)
Lunds universitet (8)
Chalmers tekniska högskola (8)
Uppsala universitet (5)
Stockholms universitet (5)
Göteborgs universitet (3)
visa fler...
Örebro universitet (3)
Kungliga Tekniska Högskolan (1)
Linköpings universitet (1)
Handelshögskolan i Stockholm (1)
Högskolan i Skövde (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (46)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (12)
Medicin och hälsovetenskap (12)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy