SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Montanes Rodriguez P.) srt2:(2006-2009)"

Sökning: WFRF:(Montanes Rodriguez P.) > (2006-2009)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ortiz, J.L., et al. (författare)
  • Detection of sporadic impact flashes on the Moon : Implications for the luminous efficiency of hypervelocity impacts and derived terrestrial impact rates
  • 2006
  • Ingår i: Icarus. - : Elsevier BV. - 0019-1035 .- 1090-2643. ; 184:2, s. 319-326
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first redundant detection of sporadic impact flashes on the Moon from a systematic survey performed between 2001 and 2004. Our wide-field lunar monitoring allows us to estimate the impact rate of large meteoroids on the Moon as a function of the luminous energy received on Earth. It also shows that some historical well-documented mysterious lunar events fit in a clear impact context. Using these data and traditional values of the luminous efficiency for this kind of event we obtain that the impact rate on Earth of large meteoroids (0.1–10 m) would be at least one order of magnitude larger than currently thought. This discrepancy indicates that the luminous efficiency of the hypervelocity impacts is higher than 10−2, much larger than the common belief, or the latest impact fluxes are somewhat too low, or, most likely, a combination of both. Our nominal analysis implies that on Earth, collisions of bodies with masses larger than 1 kg can be as frequent as 80,000 per year and blasts larger than 15-kton could be as frequent as one per year, but this is highly dependent on the exact choice of the luminous efficiency value. As a direct application of our results, we expect that the impact flash of the SMART-1 spacecraft should be detectable from Earth with medium-sized telescopes.
  •  
2.
  • Montanes-Rodriguez, Pilar, et al. (författare)
  • Vegetation signature in the observed globally integrated spectrum of earth considering simultaneous cloud data : Applications for extrasolar planets
  • 2006
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 651:1 I, s. 544-552
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of missions will be launched over the next few decades that will be designed to detect and characterize extrasolar planets around nearby stars. These missions will search for habitable environments and signs of life (biosignatures) in planetary spectra. The vegetation's "red edge," an enhancement in the Earth's spectrum near 700 nm when sunlight is reflected from greenery, is often suggested as a tool in the search for life in terrestrial-like extrasolar planets. Here, through ground-based observations of the Earth's spectrum, satellite observations of clouds, and an advanced atmospheric radiative-transfer code, we determine the temporal evolution of the vegetation signature of Earth. We find a strong correlation between the evolution of the spectral intensity of the red edge and changes in the cloud-free vegetated area over the course of observations. This relative increase for our single day corresponds to an apparent reflectance change of about 0.0050 ± 0.0005 with respect to the mean albedo of 0.25 at 680 nm (2.0% ± 0.2%). The excellent agreement between models and observations motivated us to probe more deeply into the red-edge detectability using real cloud observations at longer timescales. Overall, we find the evolution of the red-edge signal in the globally averaged spectra to be weak, and only attributable to vegetation changes when the real land and cloud distributions for the day are known. However, it becomes prominent under certain Sun-Earth-Moon orbital geometries that are applicable to the search for life in extrasolar planets. Our results indicate that vegetation detection in Earth-like planets will require a considerable level of instrumental precision and will be a difficult task, but not as difficult as the normally weak earthshine signal might seem to suggest.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy