SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moore Thomas Professor) srt2:(2020-2021)"

Sökning: WFRF:(Moore Thomas Professor) > (2020-2021)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Serk, Henrik, 1980-, et al. (författare)
  • Global CO2 fertilization of Sphagnum peat mosses via suppression of photorespiration during the twentieth century
  • 2021
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Natural peatlands contribute significantly to global carbon sequestration and storage of biomass, most of which derives from Sphagnum peat mosses. Atmospheric CO2 levels have increased dramatically during the twentieth century, from 280 to > 400 ppm, which has affected plant carbon dynamics. Net carbon assimilation is strongly reduced by photorespiration, a process that depends on the CO2 to O2 ratio. Here we investigate the response of the photorespiration to photosynthesis ratio in Sphagnum mosses to recent CO2 increases by comparing deuterium isotopomers of historical and contemporary Sphagnum tissues collected from 36 peat cores from five continents. Rising CO2 levels generally suppressed photorespiration relative to photosynthesis but the magnitude of suppression depended on the current water table depth. By estimating the changes in water table depth, temperature, and precipitation during the twentieth century, we excluded potential effects of these climate parameters on the observed isotopomer responses. Further, we showed that the photorespiration to photosynthesis ratio varied between Sphagnum subgenera, indicating differences in their photosynthetic capacity. The global suppression of photorespiration in Sphagnum suggests an increased net primary production potential in response to the ongoing rise in atmospheric CO2, in particular for mire structures with intermediate water table depths.
  •  
3.
  • Tyburski, Robin, 1991- (författare)
  • Deciphering the Mechanistic Diversity of Proton-Coupled Electron Transfer Reactions
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Proton coupled electron transfer is ubiquitous in biological and artificial reaction systems. Much has been done in order to describe the occurrence of such reactions. However, PCET reactivity is often very complex. For instance, there are multiple (stepwise and concerted) mechanistic pathways through which PCET may occur. The aim of this thesis is to further describe factors and underlying principles governing PCET reactivity. The contents of this thesis can be summarized in three parts:In the first part (chapter 4), the competition between different PCET mechanisms is discussed. Considering all mathematical expressions for the dependence of the rate constants on The Gibbs free energy changes (driving forces) associated with electron and proton transfer, mechanistic Zone-Diagrams are constructed. These show which of the mechanistic pathways is dominant, given a certain electron and proton transfer driving force. It is shown, how these diagrams simplify discussion of PCET reactivity. Strategies for modifying the mechanistic landscape, suppressing or favoring a CEPT mechanism, are demonstrated in the PCET oxidation of 4-methoxyphenol by photogenerated Ru(III) oxidants in the presence of pyridine bases. These are discussed utilizing the zone-diagram methodology. Implications for catalytic applications are discussed.The second part (chapter 5) introduces pressure dependence as a tool for mechanistic characterization of the PCET reactions. The PCET oxidation of tungsten hydrides covalently linked to pyridine bases by photogenerated Ru(III) oxidants was studied, and contributions from multiple mechanistic pathways were uncovered. It is shown, how each pathway has a characteristic pressure dependence. These can be related to changes in electrostriction of the solvent modifying the volume profile of the reaction.Finally, the third part (Chapter 6) deals with the concerted pathway. The possibility of photo-EPT, where electronic excitation directly yields the PCET product state, in Phenol/N-Methyl-4,4’-bipyridine complexes is discussed. It is shown that the optical charge-transfer absorption in these complexes is not coupled to proton transfer, in spite of previous claims. Further, the pressure dependence of the CEPT quenching of excited state fac-Re(CO)3(2,2’-bpy)(4,4’-bpy)+ by substituted Phenols is monitored. It is shown that the observed pressure dependence cannot be rationalized using the electrostriction arguments outlined in chapter 5. Instead, a model relating the observations to pressure induced changes of contributing proton tunneling distances is constructed. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy