SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moradi G) srt2:(2010-2014)"

Sökning: WFRF:(Moradi G) > (2010-2014)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rauer, H., et al. (författare)
  • The PLATO 2.0 mission
  • 2014
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 38:1-2, s. 249-330
  • Tidskriftsartikel (refereegranskat)abstract
    • PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s cadence) providing a wide field-of-view (2232 deg(2)) and a large photometric magnitude range (4-16 mag). It focuses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e. g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such a low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmospheres. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA's Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.
  •  
2.
  •  
3.
  • Cederwall, Bo, et al. (författare)
  • Evidence for a spin-aligned neutron-proton paired phase from the level structure of 92Pd
  • 2011
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 469:7328, s. 68-71
  • Tidskriftsartikel (refereegranskat)abstract
    • Shell structure and magic numbers in atomic nuclei were generally explained by pioneering work(1) that introduced a strong spin-orbit interaction to the nuclear shell model potential. However, knowledge of nuclear forces and the mechanisms governing the structure of nuclei, in particular far from stability, is still incomplete. In nuclei with equal neutron and proton numbers (N = Z), enhanced correlations arise between neutrons and protons (two distinct types of fermions) that occupy orbitals with the same quantum numbers. Such correlations have been predicted to favour an unusual type of nuclear superfluidity, termed isoscalar neutron-proton pairing(2-6), in addition to normal isovector pairing. Despite many experimental efforts, these predictions have not been confirmed. Here we report the experimental observation of excited states in the N = Z = 46 nucleus Pd-92. Gamma rays emitted following the Ni-58(Ar-36,2n)Pd-92 fusion-evaporation reaction were identified using a combination of state-of-the-art high-resolution c-ray, charged-particle and neutron detector systems. Our results reveal evidence for a spin-aligned, isoscalar neutron-proton coupling scheme, different from the previous prediction(2-6). We suggest that this coupling scheme replaces normal superfluidity (characterized by seniority coupling(7,8)) in the ground and low-lying excited states of the heaviest N = Z nuclei. Such strong, isoscalar neutron-proton correlations would have a considerable impact on the nuclear level structure and possibly influence the dynamics of rapid proton capture in stellar nucleosynthesis.
  •  
4.
  •  
5.
  • Zheng, Y., et al. (författare)
  • gamma-ray linear polarization measurements and (g(9/2))(-3) neutron alignment in Ru-91
  • 2013
  • Ingår i: Physical Review C. Nuclear Physics. - : American Physical Society (APS). - 0556-2813 .- 1089-490X. ; 87:4, s. 044328-
  • Tidskriftsartikel (refereegranskat)abstract
    • Linear polarization measurements have been performed for gamma rays in Ru-91 produced with the Ni-58(Ar-36,2p1n gamma)Ru-91 reaction at a beam energy of 111 MeV. The EXOGAM Ge clover array has been used to measure the gamma-gamma coincidences, gamma-ray linear polarization, and gamma-ray angular distributions. The polarization sensitivity of the EXOGAM clover detectors acting as Compton polarimeters has been determined in the energy range 0.3-1.3 MeV. Several transitions have been observed for the first time. Measurements of linear polarization and angular distribution have led to the firm assignments of spin differences and parity of high-spin states in Ru-91. More specifically, calculations using a semiempirical shell model were performed to understand the structures of the first and second (21/2(+)) and (17/2(+)) levels. The results are in good agreement with the experimental data, supporting the interpretation of the nonyrast (21/2(+)) and (17/2(+)) states in terms of the J(max) and J(max) - 2 members of the seniority-three nu(g(9/2))(-3) multiplet.
  •  
6.
  • Ghazi Moradi, Farnaz, et al. (författare)
  • Spectroscopy of the neutron-deficient N=50 nucleus Rh-95
  • 2014
  • Ingår i: Physical Review C. Nuclear Physics. - 0556-2813 .- 1089-490X. ; 89:4, s. 044310-
  • Tidskriftsartikel (refereegranskat)abstract
    • The neutron-deficient semimagic (neutron number N = 50) Rh-95 nucleus has been produced at high spins using the projectile-target system Ca-40 + Ni-58 at 125 MeV beam energy. The gamma-decays of levels populated by the 3p fusion evaporation reaction channel were studied using gamma-gamma coincidences, and 20 new gamma-ray transitions involving 15 new positive-and negative-parity states were observed. Spin and parity for many of the excited states were firmly deduced for the first time using the combined directional angular correlation and direction-polarization techniques. The observed structures are discussed within the framework of large-scale shell model calculations. E1 transition strengths were deduced and used together with the results of the shell model calculations to study the contribution of different particle-hole configurations, in particular for analyzing contributions from core-excited configurations.
  •  
7.
  • Ghazi Moradi, Farnaz, 1976-, et al. (författare)
  • Character of particle-hole excitations in Ru-94 deduced from gamma-ray angular correlation and linear polarization measurements
  • 2014
  • Ingår i: Physical Review C. Nuclear Physics. - 0556-2813 .- 1089-490X. ; 89:1, s. 014301-
  • Tidskriftsartikel (refereegranskat)abstract
    • Linear polarization and angular correlations of gamma-rays depopulating excited states in the neutron-deficient nucleus Ru-94(44)50 have been measured, enabling firm spin-parity assignments for several excited states in this nucleus. The deduced multipolarities of strong transitions in the yrast structure were found to be mostly of stretched M1, E1, and E2 types and, in most cases, in agreement with previous tentative assignments. The deduced multipolarity of the 1869 keV and the connecting 257 and 1641 keV transitions indicates that the state at 6358 keV excitation energy has spin parity 12(1)(-) rather than 12(3)(+) as proposed in previous works. The presence of a 12(1)(-) state is interpreted within the framework of large-scale shell-model calculations as a pure proton-hole state dominated by the pi(p(1/2)(-1)circle times g(9/2)(-5)) and pi(p(3/2)(-1) g(9/2)(-5)) configurations. A new positive-parity state is observed at 6103 keV and is tentatively assigned as 12(2)(+). The 14(1)(-) state proposed earlier is reassigned as 13(4)(-) and is interpreted as being dominated by neutron particle-hole core excitations. The strengths of several E1 transitions have been measured and are found to provide a signature of core-excited configurations.
  •  
8.
  •  
9.
  •  
10.
  • Bäck, Torbjörn, et al. (författare)
  • Lifetime measurement of the first excited 2(+) state in (108)Te
  • 2011
  • Ingår i: Physical Review C. Nuclear Physics. - 0556-2813 .- 1089-490X. ; 84:4, s. 041306-
  • Tidskriftsartikel (refereegranskat)abstract
    • The lifetime of the first excited 2(+) state in the neutron deficient nuclide (108)Te has been measured for the first time, using a combined recoil decay tagging and recoil distance Doppler shift technique. The deduced reduced transition probability is B(E2;0(g.s.)(+) -> 2(+)) = 0.39(-0.04)(+0.05)e(2)b(2). Compared to previous experimental data on neutron deficient tellurium isotopes, the new data point constitutes a large step (six neutrons) toward the N = 50 shell closure. In contrast to what has earlier been reported for the light tin isotopes, our result for tellurium does not show any enhanced transition probability with respect to the theoretical predictions and the tellurium systematics including the new data is successfully reproduced by state-of-the-art shell model calculations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy