SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Morelli C) srt2:(2010-2014)"

Sökning: WFRF:(Morelli C) > (2010-2014)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feroci, M., et al. (författare)
  • The Large Observatory for X-ray Timing (LOFT)
  • 2012
  • Ingår i: Experimental Astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 34:2, s. 415-444
  • Tidskriftsartikel (refereegranskat)abstract
    • High-time-resolution X-ray observations of compact objects provide direct access to strong-field gravity, to the equation of state of ultradense matter and to black hole masses and spins. A 10 m(2)-class instrument in combination with good spectral resolution is required to exploit the relevant diagnostics and answer two of the fundamental questions of the European Space Agency (ESA) Cosmic Vision Theme "Matter under extreme conditions", namely: does matter orbiting close to the event horizon follow the predictions of general relativity? What is the equation of state of matter in neutron stars? The Large Observatory For X-ray Timing (LOFT), selected by ESA as one of the four Cosmic Vision M3 candidate missions to undergo an assessment phase, will revolutionise the study of collapsed objects in our galaxy and of the brightest supermassive black holes in active galactic nuclei. Thanks to an innovative design and the development of large-area monolithic silicon drift detectors, the Large Area Detector (LAD) on board LOFT will achieve an effective area of similar to 12 m(2) (more than an order of magnitude larger than any spaceborne predecessor) in the 2-30 keV range (up to 50 keV in expanded mode), yet still fits a conventional platform and small/medium-class launcher. With this large area and a spectral resolution of < 260 eV, LOFT will yield unprecedented information on strongly curved spacetimes and matter under extreme conditions of pressure and magnetic field strength.
  •  
2.
  • Feroci, M., et al. (författare)
  • Monitoring the hard X-ray sky with SuperAGILE
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 510, s. A9-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context SuperAGILE is the hard X-ray monitor of the AGILE gamma ray mission, in orbit since 23 April 2007. It is an imaging experiment based on a set of four independent silicon strip detectors, equipped with one-dimensional coded masks, operating in the nominal energy range 18-60 keV. Aims. The main goal of SuperAGILE is the observation of cosmic sources simultaneously with the main gamma-ray AGILE experiment, the Gamma Ray Imaging Detector (GRID). Given its similar to steradian-wide field of view and its similar to 15 mCrab day-sensitivity, SuperAGILE is also well suited to the long-term monitoring of Galactic compact objects and the detection of bright transients. Methods. The SuperAGILE detector properties and design allow for a 6 arcmin angular resolution in each of the two independent orthogonal projections of the celestial coordinates. Photon by photon data are continuously available by means of experiment telemetry, and are used to derive images and fluxes of individual sources, with integration times depending on the source intensity and position in the field of view. Results. We report on the main scientific results achieved by SuperAGILE over its first two years in orbit, until April 2009. The scientific observations started in mid-July 2007, with the science verification phase, continuing during the complete AGILE Cycle 1 and the first similar to half of Cycle 2. Despite the largely non-uniform sky coverage, due to the pointing strategy of the AGILE mission, a few tens of Galactic sources were monitored, sometimes for unprecedently long continuous periods, leading to the detection also of several bursts and outbursts. Approximately one gamma ray burst per month was detected and localized, allowing for prompt multi-wavelength observations. A few extragalactic sources in bright states were occasionally detected as well. The light curves of sources measured by SuperAGILE are made publicly available on the web in almost real-time. To enable a proper scientific use of these, we provide the reader with the relevant scientific and technical background.
  •  
3.
  •  
4.
  • Chen, A. W., et al. (författare)
  • Calibration of AGILE-GRID with in-flight data and Monte Carlo simulations
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 558, s. A37-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. AGILE is a γ-ray astrophysics mission which has been in orbit since 23 April 2007 and continues to operate reliably. The γ-ray detector, AGILE-GRID, has observed Galactic and extragalactic sources, many of which were collected in the first AGILE Catalog. Aims. We present the calibration of the AGILE-GRID using in-flight data and Monte Carlo simulations, producing instrument response functions (IRFs) for the effective area (A eff), energy dispersion probability (EDP), and point spread function (PSF), each as a function of incident direction in instrument coordinates and energy. Methods. We performed Monte Carlo simulations at different γ-ray energies and incident angles, including background rejection filters and Kalman filter-based γ-ray reconstruction. Long integrations of in-flight observations of the Vela, Crab and Geminga sources in broad and narrow energy bands were used to validate and improve the accuracy of the instrument response functions. Results. The weighted average PSFs as a function of spectra correspond well to the data for all sources and energy bands. Conclusions. Changes in the interpolation of the PSF from Monte Carlo data and in the procedure for construction of the energy-weighted effective areas have improved the correspondence between predicted and observed fluxes and spectra of celestial calibration sources, reducing false positives and obviating the need for post-hoc energy-dependent scaling factors. The new IRFs have been publicly available from the AGILE Science Data Center since November 25, 2011, while the changes in the analysis software will be distributed in an upcoming release.
  •  
5.
  • Tavani, M., et al. (författare)
  • Direct Evidence for Hadronic Cosmic-Ray Acceleration in the Supernova Remnant IC 443
  • 2010
  • Ingår i: The Astrophysical Journal. Letters. - 2041-8205. ; 710:2, s. L151-L155
  • Tidskriftsartikel (refereegranskat)abstract
    • The supernova remnant (SNR) IC 443 is an intermediate-age remnant well known for its radio, optical, X-ray, and gamma-ray energy emissions. In this Letter, we study the gamma-ray emission above 100 MeV from IC 443 as obtained by the AGILE satellite. A distinct pattern of diffuse emission in the energy range 100 MeV-3 GeV is detected across the SNR with its prominent maximum (source "A") localized in the northeastern shell with a flux F = (47 +/- 10) x 10(-8) photons cm(-2) s(-1) above 100 MeV. This location is the site of the strongest shock interaction between the SNR blast wave and the dense circumstellar medium. Source "A" is not coincident with the TeV source located 0.4. away and associated with a dense molecular cloud complex in the SNR central region. From our observations, and from the lack of detectable diffuse TeV emission from its northeastern rim, we demonstrate that electrons cannot be the main emitters of gamma rays in the range 0.1-10 GeV at the site of the strongest SNR shock. The intensity, spectral characteristics, and location of the most prominent gamma-ray emission together with the absence of cospatial detectable TeV emission are consistent only with a hadronic model of cosmic-ray acceleration in the SNR. A high-density molecular cloud (cloud "E") provides a remarkable "target" for nucleonic interactions of accelerated hadrons; our results show enhanced gamma-ray production near the molecular cloud/shocked shell interaction site. IC 443 provides the first unambiguous evidence of cosmic-ray acceleration by SNRs.
  •  
6.
  •  
7.
  •  
8.
  • Yilmaz, Mehmet B., et al. (författare)
  • Renal Effects of Levosimendan : A Consensus Report
  • 2013
  • Ingår i: Cardiovascular Drugs and Therapy. - : Springer Science and Business Media LLC. - 0920-3206 .- 1573-7241. ; 27:6, s. 581-590
  • Forskningsöversikt (refereegranskat)abstract
    • Renal dysfunction is common in clinical settings in which cardiac function is compromised such as heart failure, cardiac surgery or sepsis, and is associated with high morbidity and mortality. Levosimendan is a calcium sensitizer and potassium channel opener used in the treatment of acute heart failure. This review describes the effects of the inodilator levosimendan on renal function. A panel of 25 scientists and clinicians from 15 European countries (Austria, Finland, France, Hungary, Germany, Greece, Italy, Portugal, the Netherlands, Slovenia, Spain, Sweden, Turkey, the United Kingdom, and Ukraine) convened and reached a consensus on the current interpretation of the renal effects of levosimendan described both in non-clinical research and in clinical study reports. Most reports on the effect of levosimendan indicate an improvement of renal function in heart failure, sepsis and cardiac surgery settings. However, caution should be applied as study designs differed from randomized, controlled studies to uncontrolled ones. Importantly, in the largest HF study (REVIVE I and II) no significant changes in the renal function were detected. As it regards the mechanism of action, the opening of mitochondrial K-ATP channels by levosimendan is involved through a preconditioning effect. There is a strong rationale for randomized controlled trials seeking beneficial renal effects of levosimendan. As an example, a study is shortly to commence to assess the role of levosimendan for the prevention of acute organ dysfunction in sepsis (LeoPARDS).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy