SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Morley Steven K.) srt2:(2020-2024)"

Sökning: WFRF:(Morley Steven K.) > (2020-2024)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alexander, Stephen P. H., et al. (författare)
  • The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors
  • 2023
  • Ingår i: BRITISH JOURNAL OF PHARMACOLOGY. - : British pharmacological society. - 0007-1188 .- 1476-5381. ; 180
  • Tidskriftsartikel (refereegranskat)abstract
    • The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at . G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
  •  
2.
  • Christopoulos, Arthur, et al. (författare)
  • THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein-coupled receptors.
  • 2021
  • Ingår i: British journal of pharmacology. - : Wiley. - 1476-5381 .- 0007-1188. ; 178 Suppl 1
  • Forskningsöversikt (refereegranskat)abstract
    • The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
  •  
3.
  • Vandegriff, Erik M., et al. (författare)
  • Exploring Localized Geomagnetic Disturbances in Global MHD : Physics and Numerics
  • 2024
  • Ingår i: Space Weather. - : American Geophysical Union (AGU). - 1542-7390. ; 22:4
  • Tidskriftsartikel (refereegranskat)abstract
    • One of the prominent effects of space weather is the formation of rapid geomagnetic field variations on Earth's surface driven by the magnetosphere-ionosphere system. These geomagnetic disturbances (GMDs) cause geomagnetically induced currents to run through ground conducting systems. In particular, localized GMDs (LGMDs) can be high amplitude and can have an effect on scale sizes less than 100 km, making them hazardous to power grids and difficult to predict. In this study, we examine the ability of the Space Weather Modeling Framework (SWMF) to reproduce LGMDs in the 7 September 2017 event using both existing and new metrics to quantify the success of the model against observation. We show that the high-resolution SWMF can reproduce LGMDs driven by ionospheric sources, but struggles to reproduce LGMDs driven by substorm effects. We calculate the global maxima of the magnetic fluctuations to show instances when the SWMF captures LGMDs at the correct times but not the correct locations. To remedy these shortcomings we suggest model developments that will directly impact the ability of the SWMF to reproduce LGMDs, most importantly updating the ionospheric conductance calculation from empirical to physics-based. Studying the negative effects of space weather on Earth is a crucial part of protecting ourselves and our technology from solar phenomena. Fluctuations in Earth's magnetic field cause high-amplitude currents to run through ground conducting systems such as underwater cables and power lines, causing damage to the hardware. Being able to predict these magnetic field fluctuations is essential to protecting ourselves and our technology; however these effects can be highly localized, making them more difficult to predict. This study presents an analysis of a high-resolution model run of Earth's magnetic field that captures localized magnetic fluctuations on the ground. We use the model results to explore the causes of these fluctuations in the model and compare the results with observation. We show that the model can reproduce magnetic fluctuations associated with some dynamics in Earth's ionosphere, but misses some of the fluctuations caused by complex dynamics farther out in Earth's magnetic field. We also show that in some cases the model captures fluctuations at the correct times but not the correct locations. Finally we suggest model improvements that will directly improve our model's ability to reproduce and predict localized magnetic fluctuations. High resolution Space Weather Modeling Framework can reproduce Localized Geomagnetic Disturbances (localized geomagnetic disturbances s (LGMDs)) driven by ionospheric sources Magnetospheric disturbances associated with substorms appear in model, but effects do not translate to LGMDs on the ground Improvements to calculation of ionospheric conductance and capture of substorm dynamics in model needed to better predict LGMDs
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy