SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Morooka M.) srt2:(2020-2023)"

Sökning: WFRF:(Morooka M.) > (2020-2023)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Milillo, A., et al. (författare)
  • Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission
  • 2020
  • Ingår i: Space Science Reviews. - : Springer Science and Business Media LLC. - 0038-6308 .- 1572-9672. ; 216:5
  • Forskningsöversikt (refereegranskat)abstract
    • The ESA-JAXA BepiColombo mission will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric dynamics at Mercury as well as their interactions with the solar wind, radiation, and interplanetary dust. Many scientific instruments onboard the two spacecraft will be completely, or partially devoted to study the near-space environment of Mercury as well as the complex processes that govern it. Many issues remain unsolved even after the MESSENGER mission that ended in 2015. The specific orbits of the two spacecraft, MPO and Mio, and the comprehensive scientific payload allow a wider range of scientific questions to be addressed than those that could be achieved by the individual instruments acting alone, or by previous missions. These joint observations are of key importance because many phenomena in Mercury's environment are highly temporally and spatially variable. Examples of possible coordinated observations are described in this article, analysing the required geometrical conditions, pointing, resolutions and operation timing of different BepiColombo instruments sensors.
  •  
2.
  • Hadid, L. Z., et al. (författare)
  • Solar Orbiter's first Venus flyby : Observations from the Radio and Plasma Wave instrument
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. On December 27, 2020, Solar Orbiter completed its first gravity assist manoeuvre of Venus (VGAM1). While this flyby was performed to provide the spacecraft with sufficient velocity to get closer to the Sun and observe its poles from progressively higher inclinations, the Radio and Plasma Wave (RPW) consortium, along with other operational in situ instruments, had the opportunity to perform high cadence measurements and study the plasma properties in the induced magnetosphere of Venus.Aims. In this paper, we review the main observations of the RPW instrument during VGAM1. They include the identification of a number of magnetospheric plasma wave modes, measurements of the electron number densities computed using the quasi-thermal noise spectroscopy technique and inferred from the probe-to-spacecraft potential, the observation of dust impact signatures, kinetic solitary structures, and localized structures at the bow shock, in addition to the validation of the wave normal analysis on-board from the Low Frequency Receiver.Methods. We used the data products provided by the different subsystems of RPW to study Venus' induced magnetosphere.Results. The results include the observations of various electromagnetic and electrostatic wave modes in the induced magnetosphere of Venus: strong emissions of similar to 100 Hz whistler waves are observed in addition to electrostatic ion acoustic waves, solitary structures and Langmuir waves in the magnetosheath of Venus. Moreover, based on the different levels of the wave amplitudes and the large-scale variations of the electron number densities, we could identify different regions and boundary layers at Venus.Conclusions. The RPW instrument provided unprecedented AC magnetic and electric field measurements in Venus' induced magnetosphere for continuous frequency ranges and with high time resolution. These data allow for the conclusive identification of various plasma waves at higher frequencies than previously observed and a detailed investigation regarding the structure of the induced magnetosphere of Venus. Furthermore, noting that prior studies were mainly focused on the magnetosheath region and could only reach 10-12 Venus radii (R-V) down the tail, the particular orbit geometry of Solar Orbiter's VGAM1, allowed the first investigation of the nature of the plasma waves continuously from the bow shock to the magnetosheath, extending to similar to 70R(V) in the far distant tail region.
  •  
3.
  • Boldu, J. J., et al. (författare)
  • Langmuir waves associated with magnetic holes in the solar wind
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 674
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Langmuir waves (electrostatic waves near the electron plasma frequency) are often observed in the solar wind and may play a role in the energy dissipation of electrons. The largest amplitude Langmuir waves are typically associated with type II and III solar radio bursts and planetary foreshocks. In addition, Langmuir waves not related to radio bursts occur in the solar wind, but their source is not well understood. Langmuir waves have been observed inside isolated magnetic holes, suggesting that magnetic holes play an important role in the generation of Langmuir waves.Aims. We provide the statistical distribution of Langmuir waves in the solar wind at different heliocentric distances. In particular, we investigate the relationship between magnetic holes and Langmuir waves. We identify possible source regions of Langmuir waves in the solar wind, other than radio bursts, by analyzing the local plasma conditions.Methods. We analyzed data from Solar Orbiter's Radio and Plasma Waves (RPW) and Magnetometer (MAG) instruments. We used the triggered electric field snapshots and onboard statistical data (STAT) of the Time Domain Sampler (TDS) of RPW to identify Langmuir waves and investigate their properties. The plasma densities were derived from the spacecraft potential estimated by RPW. The MAG data were used to monitor the background magnetic field and detect magnetic holes, which are defined as regions with an isolated decrease in |B| of 50% or more compared to the background level. The statistical analysis was performed on data from 2020 to 2021, comprising heliocentric distances between 0.5 AU and 1 AU.Results. We show that 78% of the Langmuir waves in the solar wind not connected to radio bursts occur in regions of local magnetic field depletions, including the regions classified as isolated magnetic holes. We also show that the Langmuir waves occur more frequently inside magnetic holes than in any other region in the solar wind, which indicates that magnetic holes are important source regions of solar wind Langmuir waves. We find that Langmuir waves associated with magnetic holes in the solar wind typically have lower amplitudes than those associated with radio bursts.
  •  
4.
  • Hadid, L. Z., et al. (författare)
  • Ambipolar electrostatic field in negatively charged dusty plasma
  • 2022
  • Ingår i: Journal of Plasma Physics. - : Cambridge University Press. - 0022-3778 .- 1469-7807. ; 88:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the effect of negatively charged dust on the magnetic-field-aligned polarisation electrostatic field (E-parallel to) using Cassini's RPWS/LP in situ measurements during the `ring-grazing' orbits. We derive a general expression for E-parallel to and estimate for the first time in situ parallel to E-parallel to parallel to (approximately 10(-5) V m(-1)) near the Janus and Epimetheus rings. We further demonstrate that the presence of the negatively charged dust close to the ring plane (vertical bar Z vertical bar less than or similar to 0.11 R-s) amplifies parallel to E-parallel to parallel to by at least one order of magnitude and reverses its direction due to the effect of the charged dust gravitational and inertial forces. Such reversal confines the electrons at the magnetic equator within the dusty region, around 0.047 R-s above the ring plane. Furthermore, we discuss the role of the collision terms, in particular the ion-dust drag force, in amplifying E-parallel to. These results imply that the charged dust, as small as nanometres in size, can have a significant influence on the plasma transport, in particular ambipolar diffusion along the magnetic field lines, and so their presence must be taken into account when studying such dynamical processes.
  •  
5.
  • Zaslavsky, A., et al. (författare)
  • First dust measurements with the Solar Orbiter Radio and Plasma Wave instrument
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 656, s. A30-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Impacts of dust grains on spacecraft are known to produce typical impulsive signals in the voltage waveform recorded at the terminals of electric antennas. Such signals (as may be expected) are routinely detected by the Time Domain Sampler (TDS) system of the Radio and Plasma Waves (RPW) instrument on board Solar Orbiter. Aims. We investigate the capabilities of RPW in terms of interplanetary dust studies and present the first analysis of dust impacts recorded by this instrument. Our purpose is to characterize the dust population observed in terms of size, flux, and velocity. Methods. We briefly discuss previously developed models of voltage pulse generation after a dust impact onto a spacecraft and present the relevant technical parameters for Solar Orbiter RPW as a dust detector. Then we present the statistical analysis of the dust impacts recorded by RPW /TDS from April 20, 2020 to February 27, 2021 between 0.5AU and 1AU. Results. The study of the dust impact rate along Solar Orbiter's orbit shows that the dust population studied presents a radial velocity component directed outward from the Sun. Its order of magnitude can be roughly estimated as nu(r,dust) similar or equal to 50 km s(-1), which is consistent with the flux of impactors being dominated by fi-meteoroids. We estimate the cumulative flux of these grains at 1AU to be roughly F-beta similar or equal to 8 x 10(-5) m(-2) s(-1) for particles of a radius r greater than or similar to 100 nm. The power law index ffi of the cumulative mass flux of the impactors is evaluated by two di fferents methods, namely: direct observations of voltage pulses and indirect e ffect on the impact rate dependency on the impact speed. Both methods give the following result: delta similar or equal to 0.3-0.4. Conclusions. Solar Orbiter RPW proves to be a suitable instrument for interplanetary dust studies, and the dust detection algorithm implemented in the TDS subsystem an e fficient tool for fluxes estimation. These first results are promising for the continuation of the mission, in particular, for the in situ study of the inner Solar System dust cloud outside of the ecliptic plane, which Solar Orbiter will be the first spacecraft to explore.
  •  
6.
  • Holmberg, M. K. G., et al. (författare)
  • Cassini-Plasma Interaction Simulations Revealing the Cassini Ion Wake Characteristics : Implications for In-Situ Data Analyses and Ion Temperature Estimates
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We have used Spacecraft Plasma Interaction Software (SPIS) simulations to study the characteristics (i.e., dimensions, ion depletion, and evolution with the changing spacecraft attitude) of the Cassini ion wake. We focus on two regions, the plasma disk at 4.5-€“4.7 RS, where the most prominent wake structure will be formed, and at 7.6 RS, close to the maximum distance at which a wake structure can be detected in the Cassini Langmuir probe (LP) data. This study also reveals how the ion wake and the spacecraft plasma interaction have impacted the Cassini LP measurements in the studied environments, for example, with a strong decrease in the measured ion density but with minor interference from the photoelectrons and secondary electrons originating from the spacecraft. The simulated ion densities and spacecraft potentials are in very good agreement with the LP measurements. This shows that SPIS is an excellent tool to use for analyses of LP data, when spacecraft material properties and environmental parameters are known and used correctly. The simulation results are also used to put constraints on the ion temperature estimates in the inner magnetosphere of Saturn. The best agreement between the simulated and measured ion density is obtained using an ion temperature of 8 eV at ∼4.6 RS. This study also shows that SPIS simulations can be used in order to better constrain plasma parameters in regions where accurate measurements are not available.
  •  
7.
  • Persoon, A. M., et al. (författare)
  • Evidence of Electron Density Enhancements in the Post-Apoapsis Sector of Enceladus' Orbit
  • 2020
  • Ingår i: Journal of Geophysical Research - Space Physics. - : AMER GEOPHYSICAL UNION. - 2169-9380 .- 2169-9402. ; 125:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Enceladus' plume is the dominant source of neutrals and plasma in Saturn's magnetosphere. The plasma results from the ionization of icy particles and water vapor, which are vented into Saturn's inner magnetosphere through fissures in Enceladus' southern polar region. These fissures are subjected to tidal stresses that can vary as Enceladus moves in a slightly eccentric orbit around Saturn. Plume activity and brightness have also been shown to vary with the moon's orbital position, reaching a maximum when Enceladus is farthest away from Saturn in its orbit (the Enceladus orbital apoapsis). In this paper we will show that temporal variations in the thermal electron density distribution correlate with the position of Enceladus in its orbit around Saturn, with the strongest density enhancements in the vicinity of Enceladus when the moon is in the post-apoapsis sector of its orbit.
  •  
8.
  • Aperis, Alex, et al. (författare)
  • Influence of electron-phonon coupling strength on signatures of even and odd-frequency superconductivity
  • 2020
  • Ingår i: Annals of Physics. - : ACADEMIC PRESS INC ELSEVIER SCIENCE. - 0003-4916 .- 1096-035X. ; 417
  • Tidskriftsartikel (refereegranskat)abstract
    • The recently discovered APt(3)P (A= Sr, Ca, La) family of superconductors offers a platform to study frequency dependent superconducting phenomena as the electron-phonon coupling varies from weak to strong. Here we perform ab initio Eliashberg theory calculations to investigate two such phenomena, the occurrence of dip-hump structures in the tunneling spectra and the magnetic field induced coexistence of even and odd frequency superconductivity in these compounds. By calculating the superfluid density, we make materials specific predictions for the occurrence of the paramagnetic Meissner effect as a hallmark of odd frequency pairing. Our results provide a link between two seemingly uncorrelated aspects of even and odd frequency superconductivity and provide theoretical guidance for the future experimental identification of bulk odd frequency superconductivity in this materials' family. (C) 2020 Elsevier Inc. All rights reserved.
  •  
9.
  •  
10.
  • Karlsson, Tomas, 1964-, et al. (författare)
  • Magnetic Holes in the Solar Wind and Magnetosheath Near Mercury
  • 2021
  • Ingår i: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 126:5
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a comprehensive statistical study of magnetic holes, defined as localized decreases of the magnetic field strength of at least 50%, in the solar wind near Mercury, using MESSENGER orbital data. We investigate the distributions of several properties of the magnetic holes, such as scale size, depth, and associated magnetic field rotation. We show that the distributions are very similar for linear magnetic holes (with a magnetic field rotation across the magnetic holes of less than 25 degrees) and rotational holes (rotations >25 degrees), except for magnetic holes with very large rotations (greater than or similar to 140 degrees). Solar wind magnetic hole scale sizes follow a log-normal distribution, which we discuss in terms of multiplicative growth. We also investigate the background magnetic field strength of the solar wind surrounding the magnetic holes, and conclude that it is lower than the average solar wind magnetic field strength. This is consistent with finding solar wind magnetic holes in high-beta regions, as expected if magnetic holes have a connection to magnetic mirror mode structures. We also present, for the first time, comprehensive statistics of isolated magnetic holes in a planetary magnetosheath. The properties of the magnetosheath magnetic holes are very similar to the solar wind counterparts, and we argue that the most likely interpretation is that the magnetosheath magnetic holes have a solar wind origin, rather than being generated locally in the magnetosheath.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy