SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Moros Matthias) srt2:(2020-2024)"

Sökning: WFRF:(Moros Matthias) > (2020-2024)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andrén, Elinor, et al. (författare)
  • Medieval versus recent environmental conditions in the Baltic Proper, what was different a thousand years ago?
  • 2020
  • Ingår i: Palaeogeography, Palaeoclimatology, Palaeoecology. - : Elsevier. - 0031-0182 .- 1872-616X. ; 555
  • Tidskriftsartikel (refereegranskat)abstract
    • A sediment record from the western Gotland Basin, northwestern Baltic Proper, covering the last 1200 years, was investigated for past changes in climate and the environment using diatoms as a proxy. The aim is to compare the environmental conditions reconstructed during Medieval times with settings occurring the last century under influence of environmental stressors like eutrophication and climate change. The study core records more marine conditions in the western Gotland Basin surface waters during the Medieval Climate Anomaly (MCA; 950–1250C.E.), with a salinity of at least 8 psu compared to the present 6.5 psu. The higher salinity together with a strong summer-autumn stratification caused by warmer climate resulted in extensive long-lasting diatom blooms of Pseudosolenia calcar-avis, effectively enhancing the vertical export of organic carbon to the sediment and contributing to benthic hypoxia. Accordingly, our data support that a warm and dry climate induced the extensive hypoxic areas in the open Baltic Sea during the MCA. During the Little ice Age (LIA; 1400–1700C.E.), the study core records oxic bottom water conditions, decreasing salinity and less primary production. This was succeeded during the 20th century, about 1940, by environmental changes caused by human-induced eutrophication. Impact of climate change is visible in the diatom composition data starting about 1975C.E. and becoming more pronounced 2000C.E., visible as an increase of taxa that thrived in stratified waters during autumn blooms typically due to climate warming.
  •  
2.
  • Ferraro, Mattia, et al. (författare)
  • Multi-century reconstruction of environmental conditions in Lurefjorden, Norway.
  • 2024
  • Ingår i: 24th Nordic Geological Winter Meeting, 10-12th Jan, 2024, Gothenburg, Sweden.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Benthic foraminiferal assemblages are identified to reconstruct changes in environmental conditions over the last few centuries in Lurefjorden, a western Norwegian fjord. From ca. 1970 until present days the relative abundance of Brizalina skagerrakkensis, an efficient bio-indicator for organic matter fluxes, is enhanced relative to the preceding time interval. Hence, our results suggest that there is an increase of the organic matter within the Lurefjorden basin in the last 50 years. Over the same period, there is also an increase in the absolute abundance of agglutinated species, indicating lower oxygen concentration in the water. A lowering of the oxygen concentrations may have taken place as a response of a greater oxygen consumption caused by a higher organic matter supply in the water column. Accoridng to Aksnes (2009), Lurefjorden was subject to an increased freshening of Norwegian coastal waters (NCW), which has led to a decrease in sunlight penetration into the water column, affecting the oxygen levels and the behavior of marine life within the basin, between 1935 and 2007. Furthermore, we used diversity indices to study the ecological status of the area, showing significant growth in diversity, abundance, and richness within the benthic foraminiferal community over the past 50 years. Our observations highlight that an increase in the input of organic matter over the last century has led to a change in the benthic foraminifera community in the Lurefjorden basin.
  •  
3.
  • Moros, Matthias, et al. (författare)
  • Giant saltwater inflow in AD 1951 triggered Baltic Sea hypoxia
  • 2024
  • Ingår i: Boreas. - : John Wiley & Sons. - 0300-9483 .- 1502-3885. ; 53:2, s. 125-138
  • Tidskriftsartikel (refereegranskat)abstract
    • A marked sedimentological change in subsurface sediments from the entire Baltic Proper, the Baltic Sea, has been previously noted. Our detailed work on a variety of multi-cores from basin-wide transects indicates that this sedimentological change was caused by a large shift in environmental conditions during the 1950s. Until the 1950s, the water column was rather weakly stratified and winter-time convection - although weakened during the post Little Ice Age warming - was still able to ventilate the bottom waters of the Baltic Proper. Therefore, complete sediment sequences only accumulated in calm waters deeper than 150-160 m. High-resolution benthic foraminiferal records of subsurface sediments obtained along the saline water inflow pathway in combination with historical data indicate that the depositional environment changed drastically owing to the giant saline water inflow in AD 1951. The accompanied sharpening of the halo(pycno)cline triggered a collapse in the ventilation of the basin, resulting in oxygen-deficient bottom waters. This deficiency, in turn, caused the onset of phosphate release from the sediments, which accelerated primary production. The ventilation collapse also enabled the onset of deposition of organic carbon-rich sediments also in shallower water areas as calm conditions prevailed up to the modern winter mixing depth (60-70 m). A slight return to Little Ice Age-type conditions was observed during the late 1980s when temperatures decreased and stratification weakened. These conditions gave rise to a reduction in hypoxic areas and to a bottom-water ventilation, most pronounced in the north of the so-called Baltic Sea Klint, a hydrographic and topographic barrier. However, the general environmental conditions essentially have not changed since the 1950s. Remarkably, external (temperature and stratification) in combination with internal factors (e.g. ventilation collapse and phosphate release) were able to change the redox conditions of the Baltic Proper from oxic to hypoxic within less than 10 years. A marked sedimentological change seen in sub-recent seabed sediment cores from the entire Baltic proper can be attributed to large hydrographic and environmental changes that started at the end of the Little Ice Age and were accelerated by a rapid change in stratification resulting from the massive inflow of saline water in AD 1951. The increase in stratification caused a collapse of the already weakened vertical winter-time deep water convection leading to hypoxia in the bottom waters, which in turn forced a sudden phosphate release from the sediments and increased primary production in the late 1950s.image
  •  
4.
  • Moros, Matthias, et al. (författare)
  • Is 'deep-water formation' in the Baltic Sea a key to understanding seabed dynamics and ventilation changes over the past 7,000 years?
  • 2020
  • Ingår i: Quaternary International. - : Elsevier BV. - 1040-6182 .- 1873-4553. ; 550, s. 55-65
  • Tidskriftsartikel (refereegranskat)abstract
    • Numerous hydro-acoustic studies of the seabed of the Baltic Sea have revealed the unusual occurrence of sediment contourite drifts and re-suspension at greater water depths. In addition, radiocarbon dating of bulk sediments indicates significant age reversals. We present new geophysical, sediment proxy data (including extensive radiocarbon dating) and hydrographic measurements, which are combined with results of numerous marine geological studies performed during the last decades. These data indicate that a deep-water formation process significantly affected the seabed dynamics during regional climatically cold phases during the last c. 7,000 years. We propose that, during the colder periods (e.g. the Little Ice Age), newly formed bottom waters likely caused widespread re-suspension of organic carbon-rich laminated sediments that were deposited during the preceding warm periods in shallower areas, and this material was transported to and re-deposited in the deeper parts of the Baltic Sea sub-basins. In our scenario, a topographic feature, known as the Baltic Sea Klint, acted as a hydrographic barrier for deep-water formed in the northern Baltic. Thus, during the cold periods increased lateral matter influx from the northern Baltic led to the accumulation of much thicker macroscopically homogenous clayey sediments in sub-basins north of the Klint. Moreover, deep-water formation produced bottom currents that led to the formation of sediment contourite drifts at water depths of> 200 m in the Bothnian Sea, the Aland Deep and northern central Baltic Sea sub-basins. Bottom water ventilation in the Baltic Sea is generally assumed to be determined solely by the inflow of oxygen-rich, saline water from the North Sea, but we challenge this assumption and postulate that deep-water formation is a key process that ventilates the bottom waters of the Baltic Sea during climatically cold periods with substantial implications for its sedimentary archive.
  •  
5.
  • O'Regan, Matt, et al. (författare)
  • The Holocene dynamics of Ryder Glacier and ice tongue in north Greenland
  • 2021
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 15:8, s. 4073-4097
  • Tidskriftsartikel (refereegranskat)abstract
    • The northern sector of the Greenland Ice Sheet is considered to be particularly susceptible to ice mass loss arising from increased glacier discharge in the coming decades. However, the past extent and dynamics of outlet glaciers in this region, and hence their vulnerability to climate change, are poorly documented. In the summer of 2019, the Swedish icebreaker Oden entered the previously unchartered waters of Sherard Osborn Fjord, where Ryder Glacier drains approximately 2 % of Greenland's ice sheet into the Lincoln Sea. Here we reconstruct the Holocene dynamics of Ryder Glacier and its ice tongue by combining radiocarbon dating with sedimentary facies analyses along a 45 km transect of marine sediment cores collected between the modern ice tongue margin and the mouth of the fjord. The results illustrate that Ryder Glacier retreated from a grounded position at the fjord mouth during the Early Holocene (> 10.7±0.4 ka cal BP) and receded more than 120 km to the end of Sherard Osborn Fjord by the Middle Holocene (6.3±0.3 ka cal BP), likely becoming completely land-based. A re-advance of Ryder Glacier occurred in the Late Holocene, becoming marine-based around 3.9±0.4 ka cal BP. An ice tongue, similar in extent to its current position was established in the Late Holocene (between 3.6±0.4 and 2.9±0.4 ka cal BP) and extended to its maximum historical position near the fjord mouth around 0.9±0.3 ka cal BP. Laminated, clast-poor sediments were deposited during the entire retreat and regrowth phases, suggesting the persistence of an ice tongue that only collapsed when the glacier retreated behind a prominent topographic high at the landward end of the fjord. Sherard Osborn Fjord narrows inland, is constrained by steep-sided cliffs, contains a number of bathymetric pinning points that also shield the modern ice tongue and grounding zone from warm Atlantic waters, and has a shallowing inland sub-ice topography. These features are conducive to glacier stability and can explain the persistence of Ryder's ice tongue while the glacier remained marine-based. However, the physiography of the fjord did not halt the dramatic retreat of Ryder Glacier under the relatively mild changes in climate forcing during the Holocene. Presently, Ryder Glacier is grounded more than 40 km seaward of its inferred position during the Middle Holocene, highlighting the potential for substantial retreat in response to ongoing climate change.
  •  
6.
  • Sanyal, Anushree, et al. (författare)
  • Not dead yet : Diatom resting spores can survive in nature for several millennia
  • 2022
  • Ingår i: American Journal of Botany. - : Botanical Society of America. - 0002-9122 .- 1537-2197. ; , s. 67-82
  • Tidskriftsartikel (refereegranskat)abstract
    • PREMISE: Understanding the adaptive capacities of species over long timescales lies in examining the revived recent and millennia old resting spores buried in sediments. We show for the first time the revival, viability and germination rate of resting spores of the diatom Chaetoceros deposited in sub-seafloor sediments from three ages (recent: 0-80 years; ancient: ~1250 (Medieval Climate Anomaly) and ~6600 (Holocene Thermal Maximum) calendar year before present.METHODS: Recent and ancient Chaetoceros spores were revived to examine their viability and germination rate. Light and scanning electron microscopy and Sanger sequencing was done to identify the species.KEY RESULTS: We show that ~6600 cal. year BP old Chaetoceros resting spores are still viable and the vegetative reproduction in recent and ancient resting spores vary. The time taken to germinate is three hours to 2-3 days in both recent and ancient spores, but the germination rate of the spores decreased with increasing age. The germination rate of the recent spores was ~41% while that of the ancient spores were ~31% and ~12% for the ~1250 and ~6600 cal. year BP old resting spores. Based on the morphology of the germinated vegetative cells we identified the species as Chaetoceros muelleri var. subsalsum. Sanger sequences of nuclear and chloroplast markers identified the species as Chaetoceros muelleri.CONCLUSIONS: We identify a unique model system, Chaetoceros muelleri var. subsalsum and show that recent and ancient resting spores of the species buried in sediments in the Baltic Sea can be revived and used for long-term evolutionary studies.
  •  
7.
  • West, Gabriel, et al. (författare)
  • Late Holocene Paleomagnetic Secular Variation in the Chukchi Sea, Arctic Ocean
  • 2022
  • Ingår i: Geochemistry Geophysics Geosystems. - : American Geophysical Union (AGU). - 1525-2027. ; 23:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The geomagnetic field behavior in polar regions remains poorly understood and documented. Although a number of Late Holocene paleomagnetic secular variation (PSV) records exist from marginal settings of the Amerasian Basin in the Arctic Ocean, their age control often relies on a handful of radiocarbon dates to constrain ages over the past 4,200 years. Here we present well-dated Late Holocene PSV records from two sediment cores recovered from the Chukchi Sea, Arctic Ocean. The records are dated using 26 C-14 measurements, with local marine reservoir corrections calibrated using tephra layers from the 3.6 cal ka BP Aniakchak eruption in Northern Alaska. These C-14-based chronologies are extended into the post-bomb era using caesium-137 dating, and mercury isochrons. Paleomagnetic measurements and rock magnetic analyses reveal stable characteristic remanent magnetization directions, and a magnetic mineralogy dominated by low-coercivity minerals. The PSV records conform well to global spherical harmonic field model outputs. Centennial to millennial scale directional features are synchronous between the cores and other Western Arctic records from the area. Due to the robust chronology, these new high-resolution PSV records provide a valuable contribution to the characterization of geomagnetic field behavior in the Arctic over the past few thousand years, and can aid in developing age models for suitable sediments found in this region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy