SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Motta Fabrizio) srt2:(2020)"

Sökning: WFRF:(Motta Fabrizio) > (2020)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dénarié, Alice, et al. (författare)
  • Assessment of renewable and waste heat recovery for DH through GIS mapping : the national potential in Italy
  • 2020
  • Ingår i: Book of Abstracts. ; , s. 129-129
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • This work aims at showing the potential of waste and renewable heat recovery in Italy through detailed mapping of these sources. The ambition of this analysis is to highlight the areas with important heat recovery potential and to show how the matching with suitable heat demand would allow its exploitation through district heating expansion. The importance of waste heat and renewable heat potentially recoverable to reduce primary energy consumption in the civil sector is widely recognized. Nevertheless, these potential is widely unexploited in Italy. The processes and energy sources have been analysed in terms of geographical location, quantification of available heat and recovery costs with a special focus on temperature levels. The main distinction between low temperature and high temperature heat sources has been applied in order to identify the heat recovery characteristics and the consequent additional costs for temperature upgrades. The inputs of the analysis performed in this work come from national database, which has allowed obtaining more detailed and wider results with respect to international existing studies on the same subject. Two different approaches have been used to map potential heat: one to identify and quantify existing waste heat recovery and one to assess and estimate energy coming from potential new plants. The analysed sources belonging to the first category are industrial processes, waste to energy plants, waste water treatment plants and datacentres, while biomass, geothermal energy and electrolysis plants estimation belong to the second one. Results shows that the national available waste and renewable heat amount to 270 TWh which is an important outcome in comparison with a national heat demand for the residential and tertiary sector of 400 TWh. Out of this results, according to a nuts 3 regional aggregation of heat demand, 95 TWh could be recovered in DH. The reduction from theoretical potential of 270 TWh to 95 TWh is due to geographical matching of heat demand and available waste heat and on some hypothesis related to the diffusion of DH. This work shows the huge unexpressed potential of waste heat reutilisation in Italy and how the mapping of recoverable heat and not only its quantification is essential to properly estimate the utilization potential.
  •  
2.
  • Spirito, Giulia, et al. (författare)
  • Potential diffusion of renewable-based 3GDH and 4GDH assessment through energy mapping : a case study in Milano
  • 2020
  • Ingår i: Book of Abstracts. - Aalborg : Aalborg Universitetsforlag. ; , s. 143-143
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • This work aims at developing a potential analysis of the diffusion of renewable-based low temperature district heating systems, through the mapping of energy demand, renewable and waste heat sources using the Italian city of Milano as a demonstrative case study. This analysis starts from the question to seek what would be the future sustainability of district heating in the framework of the foreseen scenario of building refurbishment and consequent reduction of heat demand. District heating has proven to be a recognised way to efficiently distribute renewable energy in dense urban areas. But the feasibility of this energy system is questioned in case of low heat demand and scarce availability of waste heat sources. Milano is a densely populated city, with an intense energy demand, where district heating has a low market share (<10%), which leaves the important issue of sever air pollution and where there seems to be no availability of renewable energy source. This work has been developed together with the local DH utility in order to support the municipality in defining the priority measures to be implemented in the next years in the local Environmental Plan. The developed analysis shows that DH has a wide undeveloped potential in the city which could benefit of an important amount of renewables and waste heat recovery if the temperatures where decreased by benefitting in reality by a massive energy refurbishment. The results show that the development of renewable-based low temperature district heating is not an alternative nor in competition with building energy refurbishment, but complementary. The feasibility is based on a mapping of the available waste heat sources in the city namely, industrial sites, waste water treatment plants, metro stations, datacentres, and ground water wells. For a total residential demand of 8 TWh, results showed that 6 TWh could be technically potentially covered by DH, out of which 80% at same or lower distribution costs than the existing DH system in the city. Considering the future energy demand, an energy reduction scenario has been considered in accordance with the national energy strategy for 2050, which foresee the 60% of the building stock going through important energy refurbishment. The estimated energy needs for this fraction of refurbished building stock amounts to 5 TWh out of which 2 TWh can be fed by low temperature plastic network at the same distribution costs of current 3GDH. In parallel to this reduction of energy needs, the reduction of temperature characterizing 4GDH systems opens the door to a wider set of low temperature heat recovery: the outcomes of the mapping and quantification of low temperature heat sources shows a potential of 4.5 TWh of recoverable heat in the city which increases to 5.2 considering also the surrounding suburbs. The outcomes of this works confirm the results of Stratego projects which identified the nut region surrounding Milano has a heat synergy regions and it emphasize this results by showing the effect of widening the range of heat sources by lowering the demand of network.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy